L(s) = 1 | − 5·9-s − 10·13-s + 6·17-s − 10·25-s − 18·29-s − 4·37-s − 13·49-s + 6·53-s + 20·61-s − 14·73-s + 16·81-s − 24·89-s − 20·97-s − 36·101-s − 22·109-s + 12·113-s + 50·117-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 30·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | − 5/3·9-s − 2.77·13-s + 1.45·17-s − 2·25-s − 3.34·29-s − 0.657·37-s − 1.85·49-s + 0.824·53-s + 2.56·61-s − 1.63·73-s + 16/9·81-s − 2.54·89-s − 2.03·97-s − 3.58·101-s − 2.10·109-s + 1.12·113-s + 4.62·117-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.42·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 19 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 3 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 5 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 + 5 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 + 9 T + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 + 7 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.49822591496797438401690336538, −7.14449686564876148233582580493, −6.79687210361750407728091466084, −5.93366234401884381484558908154, −5.56559135650201084358170066267, −5.32600053322851104543262796765, −5.20686401818851827647471141246, −4.07138629192131545636061302538, −3.98931312476793193392332292270, −3.12424893607844884324162519175, −2.80468657266648836263703727877, −2.16004950277651645615210004057, −1.68171654176783246558951167350, 0, 0,
1.68171654176783246558951167350, 2.16004950277651645615210004057, 2.80468657266648836263703727877, 3.12424893607844884324162519175, 3.98931312476793193392332292270, 4.07138629192131545636061302538, 5.20686401818851827647471141246, 5.32600053322851104543262796765, 5.56559135650201084358170066267, 5.93366234401884381484558908154, 6.79687210361750407728091466084, 7.14449686564876148233582580493, 7.49822591496797438401690336538