Properties

Label 4-1216e2-1.1-c1e2-0-25
Degree $4$
Conductor $1478656$
Sign $1$
Analytic cond. $94.2803$
Root an. cond. $3.11605$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·9-s − 10·13-s + 6·17-s − 10·25-s − 18·29-s − 4·37-s − 13·49-s + 6·53-s + 20·61-s − 14·73-s + 16·81-s − 24·89-s − 20·97-s − 36·101-s − 22·109-s + 12·113-s + 50·117-s + 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 30·153-s + 157-s + 163-s + ⋯
L(s)  = 1  − 5/3·9-s − 2.77·13-s + 1.45·17-s − 2·25-s − 3.34·29-s − 0.657·37-s − 1.85·49-s + 0.824·53-s + 2.56·61-s − 1.63·73-s + 16/9·81-s − 2.54·89-s − 2.03·97-s − 3.58·101-s − 2.10·109-s + 1.12·113-s + 4.62·117-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 2.42·153-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1478656\)    =    \(2^{12} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(94.2803\)
Root analytic conductor: \(3.11605\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1478656,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49822591496797438401690336538, −7.14449686564876148233582580493, −6.79687210361750407728091466084, −5.93366234401884381484558908154, −5.56559135650201084358170066267, −5.32600053322851104543262796765, −5.20686401818851827647471141246, −4.07138629192131545636061302538, −3.98931312476793193392332292270, −3.12424893607844884324162519175, −2.80468657266648836263703727877, −2.16004950277651645615210004057, −1.68171654176783246558951167350, 0, 0, 1.68171654176783246558951167350, 2.16004950277651645615210004057, 2.80468657266648836263703727877, 3.12424893607844884324162519175, 3.98931312476793193392332292270, 4.07138629192131545636061302538, 5.20686401818851827647471141246, 5.32600053322851104543262796765, 5.56559135650201084358170066267, 5.93366234401884381484558908154, 6.79687210361750407728091466084, 7.14449686564876148233582580493, 7.49822591496797438401690336538

Graph of the $Z$-function along the critical line