L(s) = 1 | + 3·9-s + 2·13-s + 6·17-s − 10·25-s − 6·29-s + 20·37-s − 24·41-s − 13·49-s + 18·53-s − 20·61-s + 2·73-s − 8·89-s − 12·97-s − 20·101-s − 18·109-s + 4·113-s + 6·117-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 18·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 9-s + 0.554·13-s + 1.45·17-s − 2·25-s − 1.11·29-s + 3.28·37-s − 3.74·41-s − 1.85·49-s + 2.47·53-s − 2.56·61-s + 0.234·73-s − 0.847·89-s − 1.21·97-s − 1.99·101-s − 1.72·109-s + 0.376·113-s + 0.554·117-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 1.45·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
−1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1−pT+pT2)(1+pT+pT2) |
| 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1−T+pT2)(1+T+pT2) |
| 11 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 13 | C2 | (1−T+pT2)2 |
| 17 | C2 | (1−3T+pT2)2 |
| 23 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 29 | C2 | (1+3T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−10T+pT2)2 |
| 41 | C2 | (1+12T+pT2)2 |
| 43 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−9T+pT2)2 |
| 59 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 71 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 73 | C2 | (1−T+pT2)2 |
| 79 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 83 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 89 | C2 | (1+4T+pT2)2 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.74236222044461134007095453218, −7.47536575646542499937872009352, −6.61303503651954034437075836396, −6.60845811420238685670203067170, −5.91824238738469752095279165720, −5.46776906443032883183491997236, −5.22289133265133441977616849928, −4.39011552338323920878309071486, −4.08931083553499496867238827018, −3.63803508541238097399374767207, −3.11827862407422559284554596552, −2.43573806798025905726670590752, −1.52291178817025335850558392010, −1.37942708011457790071691730372, 0,
1.37942708011457790071691730372, 1.52291178817025335850558392010, 2.43573806798025905726670590752, 3.11827862407422559284554596552, 3.63803508541238097399374767207, 4.08931083553499496867238827018, 4.39011552338323920878309071486, 5.22289133265133441977616849928, 5.46776906443032883183491997236, 5.91824238738469752095279165720, 6.60845811420238685670203067170, 6.61303503651954034437075836396, 7.47536575646542499937872009352, 7.74236222044461134007095453218