L(s) = 1 | + 9-s + 4·13-s − 6·17-s − 6·25-s + 12·29-s + 8·37-s − 5·49-s − 12·53-s − 8·61-s − 2·73-s − 8·81-s − 12·89-s − 12·97-s − 12·101-s − 12·109-s + 12·113-s + 4·117-s − 6·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 6·153-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 1/3·9-s + 1.10·13-s − 1.45·17-s − 6/5·25-s + 2.22·29-s + 1.31·37-s − 5/7·49-s − 1.64·53-s − 1.02·61-s − 0.234·73-s − 8/9·81-s − 1.27·89-s − 1.21·97-s − 1.19·101-s − 1.14·109-s + 1.12·113-s + 0.369·117-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.485·153-s + 0.0798·157-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
−1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C2 | 1+T2 |
good | 3 | C22 | 1−T2+p2T4 |
| 5 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2×C2 | (1−5T+pT2)(1+T+pT2) |
| 17 | C2 | (1+3T+pT2)2 |
| 23 | C22 | 1−27T2+p2T4 |
| 29 | C2×C2 | (1−9T+pT2)(1−3T+pT2) |
| 31 | C22 | 1+14T2+p2T4 |
| 37 | C2×C2 | (1−10T+pT2)(1+2T+pT2) |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C22 | 1+62T2+p2T4 |
| 47 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 53 | C2×C2 | (1−T+pT2)(1+13T+pT2) |
| 59 | C22 | 1−57T2+p2T4 |
| 61 | C2×C2 | (1−2T+pT2)(1+10T+pT2) |
| 67 | C22 | 1−97T2+p2T4 |
| 71 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 73 | C2×C2 | (1−11T+pT2)(1+13T+pT2) |
| 79 | C22 | 1+110T2+p2T4 |
| 83 | C22 | 1+58T2+p2T4 |
| 89 | C2×C2 | (1−2T+pT2)(1+14T+pT2) |
| 97 | C2×C2 | (1+pT2)(1+12T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.79479479553236507364486493732, −7.27774099213358132015809486803, −6.68957202721806193978273217581, −6.35014987329731172636910476357, −6.18099911021454210276504007249, −5.58353039983297327223378157199, −4.90711614985539699610999865212, −4.52831809305135001637386747581, −4.13546939951366041525236225079, −3.68248419208624114766605593517, −2.86217733411437857444907232853, −2.60478905040558338261948072875, −1.68216410306367556145215742738, −1.19792738995265454495203065562, 0,
1.19792738995265454495203065562, 1.68216410306367556145215742738, 2.60478905040558338261948072875, 2.86217733411437857444907232853, 3.68248419208624114766605593517, 4.13546939951366041525236225079, 4.52831809305135001637386747581, 4.90711614985539699610999865212, 5.58353039983297327223378157199, 6.18099911021454210276504007249, 6.35014987329731172636910476357, 6.68957202721806193978273217581, 7.27774099213358132015809486803, 7.79479479553236507364486493732