L(s) = 1 | + 2·5-s − 6·9-s + 8·13-s − 6·17-s − 7·25-s + 16·37-s − 12·45-s − 13·49-s − 4·53-s + 2·61-s + 16·65-s + 10·73-s + 27·81-s − 12·85-s + 12·89-s − 24·97-s − 28·101-s + 4·109-s + 24·113-s − 48·117-s − 13·121-s − 26·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2·9-s + 2.21·13-s − 1.45·17-s − 7/5·25-s + 2.63·37-s − 1.78·45-s − 1.85·49-s − 0.549·53-s + 0.256·61-s + 1.98·65-s + 1.17·73-s + 3·81-s − 1.30·85-s + 1.27·89-s − 2.43·97-s − 2.78·101-s + 0.383·109-s + 2.25·113-s − 4.43·117-s − 1.18·121-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)−Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)−Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
−1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
1
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1+pT2)2 |
| 5 | C2 | (1−T+pT2)2 |
| 7 | C2 | (1−T+pT2)(1+T+pT2) |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C2 | (1+3T+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C2 | (1+pT2)2 |
| 43 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 47 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 53 | C2 | (1+2T+pT2)2 |
| 59 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 61 | C2 | (1−T+pT2)2 |
| 67 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 71 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 73 | C2 | (1−5T+pT2)2 |
| 79 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C2 | (1+12T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.069781997002375745352734843376, −7.22663142743355843577020555382, −6.52327766267142337926450857689, −6.23231971111290599279730913097, −6.07380267050193119311144855802, −5.69887754666040376701153368082, −5.20615537675529298908400867079, −4.57069618429307251486414062571, −4.00622871486103663130279939128, −3.55029150041215641334184982487, −2.95678080105101651849410270529, −2.41972145972916601985658200179, −1.93248528179857739558289949978, −1.10874592215816899307332244272, 0,
1.10874592215816899307332244272, 1.93248528179857739558289949978, 2.41972145972916601985658200179, 2.95678080105101651849410270529, 3.55029150041215641334184982487, 4.00622871486103663130279939128, 4.57069618429307251486414062571, 5.20615537675529298908400867079, 5.69887754666040376701153368082, 6.07380267050193119311144855802, 6.23231971111290599279730913097, 6.52327766267142337926450857689, 7.22663142743355843577020555382, 8.069781997002375745352734843376