L(s) = 1 | + 2·5-s − 6·9-s + 8·13-s − 6·17-s − 7·25-s + 16·37-s − 12·45-s − 13·49-s − 4·53-s + 2·61-s + 16·65-s + 10·73-s + 27·81-s − 12·85-s + 12·89-s − 24·97-s − 28·101-s + 4·109-s + 24·113-s − 48·117-s − 13·121-s − 26·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2·9-s + 2.21·13-s − 1.45·17-s − 7/5·25-s + 2.63·37-s − 1.78·45-s − 1.85·49-s − 0.549·53-s + 0.256·61-s + 1.98·65-s + 1.17·73-s + 3·81-s − 1.30·85-s + 1.27·89-s − 2.43·97-s − 2.78·101-s + 0.383·109-s + 2.25·113-s − 4.43·117-s − 1.18·121-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 19 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 3 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 5 | $C_2$ | \( ( 1 - T + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 13 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 29 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 + 2 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.069781997002375745352734843376, −7.22663142743355843577020555382, −6.52327766267142337926450857689, −6.23231971111290599279730913097, −6.07380267050193119311144855802, −5.69887754666040376701153368082, −5.20615537675529298908400867079, −4.57069618429307251486414062571, −4.00622871486103663130279939128, −3.55029150041215641334184982487, −2.95678080105101651849410270529, −2.41972145972916601985658200179, −1.93248528179857739558289949978, −1.10874592215816899307332244272, 0,
1.10874592215816899307332244272, 1.93248528179857739558289949978, 2.41972145972916601985658200179, 2.95678080105101651849410270529, 3.55029150041215641334184982487, 4.00622871486103663130279939128, 4.57069618429307251486414062571, 5.20615537675529298908400867079, 5.69887754666040376701153368082, 6.07380267050193119311144855802, 6.23231971111290599279730913097, 6.52327766267142337926450857689, 7.22663142743355843577020555382, 8.069781997002375745352734843376