L(s) = 1 | + 6·7-s + 5·9-s + 6·17-s − 18·23-s + 10·25-s + 12·31-s + 12·41-s + 13·49-s + 30·63-s + 22·73-s − 24·79-s + 16·81-s − 16·97-s + 12·103-s − 24·113-s + 36·119-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 30·153-s + 157-s − 108·161-s + 163-s + ⋯ |
L(s) = 1 | + 2.26·7-s + 5/3·9-s + 1.45·17-s − 3.75·23-s + 2·25-s + 2.15·31-s + 1.87·41-s + 13/7·49-s + 3.77·63-s + 2.57·73-s − 2.70·79-s + 16/9·81-s − 1.62·97-s + 1.18·103-s − 2.25·113-s + 3.30·119-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 2.42·153-s + 0.0798·157-s − 8.51·161-s + 0.0783·163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.097761469\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.097761469\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 19 | $C_2$ | \( 1 + T^{2} \) |
good | 3 | $C_2^2$ | \( 1 - 5 T^{2} + p^{2} T^{4} \) |
| 5 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 - p T^{2} )^{2} \) |
| 13 | $C_2^2$ | \( 1 - 17 T^{2} + p^{2} T^{4} \) |
| 17 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + 9 T + p T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( 1 + 23 T^{2} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 37 | $C_2^2$ | \( 1 - 38 T^{2} + p^{2} T^{4} \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 43 | $C_2^2$ | \( 1 - 22 T^{2} + p^{2} T^{4} \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2^2$ | \( 1 - 25 T^{2} + p^{2} T^{4} \) |
| 59 | $C_2^2$ | \( 1 - 109 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2^2$ | \( 1 - 86 T^{2} + p^{2} T^{4} \) |
| 67 | $C_2^2$ | \( 1 - 109 T^{2} + p^{2} T^{4} \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 11 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + 12 T + p T^{2} )^{2} \) |
| 83 | $C_2^2$ | \( 1 - 130 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + 8 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.862685587425394053191256341060, −9.809603195376979946669488949759, −9.145816530441427860233828752262, −8.462742243307877688021409433914, −8.105497545734099352261462033095, −8.040319249155155768203095438866, −7.58651326697501713051468396478, −7.28668043003824428231687611588, −6.46359765609492926333934285601, −6.37254600139472960295505130365, −5.51248430504078833539322710571, −5.35132135944355142848853256403, −4.57082014948238083712548335703, −4.39078225807291656867764951514, −4.14829853802996598658054914664, −3.40579877635572868078992330615, −2.52003549943530161976396997584, −2.04295540264713895441864435695, −1.32624340253520185142858625608, −1.07113267627942141792377710412,
1.07113267627942141792377710412, 1.32624340253520185142858625608, 2.04295540264713895441864435695, 2.52003549943530161976396997584, 3.40579877635572868078992330615, 4.14829853802996598658054914664, 4.39078225807291656867764951514, 4.57082014948238083712548335703, 5.35132135944355142848853256403, 5.51248430504078833539322710571, 6.37254600139472960295505130365, 6.46359765609492926333934285601, 7.28668043003824428231687611588, 7.58651326697501713051468396478, 8.040319249155155768203095438866, 8.105497545734099352261462033095, 8.462742243307877688021409433914, 9.145816530441427860233828752262, 9.809603195376979946669488949759, 9.862685587425394053191256341060