L(s) = 1 | + 2·5-s − 2·9-s + 8·13-s + 10·17-s − 7·25-s − 4·29-s + 20·37-s + 12·41-s − 4·45-s − 5·49-s + 16·53-s + 10·61-s + 16·65-s − 30·73-s − 5·81-s + 20·85-s + 32·97-s + 36·101-s − 24·109-s + 4·113-s − 16·117-s − 13·121-s − 26·125-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
L(s) = 1 | + 0.894·5-s − 2/3·9-s + 2.21·13-s + 2.42·17-s − 7/5·25-s − 0.742·29-s + 3.28·37-s + 1.87·41-s − 0.596·45-s − 5/7·49-s + 2.19·53-s + 1.28·61-s + 1.98·65-s − 3.51·73-s − 5/9·81-s + 2.16·85-s + 3.24·97-s + 3.58·101-s − 2.29·109-s + 0.376·113-s − 1.47·117-s − 1.18·121-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.397222379 |
L(21) |
≈ |
3.397222379 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C1×C1 | (1−T)(1+T) |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 5 | C2 | (1−T+pT2)2 |
| 7 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 13 | C2 | (1−4T+pT2)2 |
| 17 | C2 | (1−5T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+2T+pT2)2 |
| 31 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 37 | C2 | (1−10T+pT2)2 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 47 | C2 | (1−9T+pT2)(1+9T+pT2) |
| 53 | C2 | (1−8T+pT2)2 |
| 59 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 61 | C2 | (1−5T+pT2)2 |
| 67 | C2 | (1+pT2)2 |
| 71 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 73 | C2 | (1+15T+pT2)2 |
| 79 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 83 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1−16T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.024247643273632491999690471751, −7.43537131861627444263317650332, −7.30495770738943457952049118581, −6.20879084669067007942487517486, −5.95681555667055397919593180547, −5.89904763388088518363904025264, −5.67735294850741520947496000769, −4.88105113826037271671762872708, −4.19084046620099313866498183608, −3.73244909832136496864835491552, −3.41145508666670040670114085640, −2.67622771685970545269516699451, −2.20146006630293663601866411040, −1.26674131115266326801058270565, −0.944005207983174855702403672277,
0.944005207983174855702403672277, 1.26674131115266326801058270565, 2.20146006630293663601866411040, 2.67622771685970545269516699451, 3.41145508666670040670114085640, 3.73244909832136496864835491552, 4.19084046620099313866498183608, 4.88105113826037271671762872708, 5.67735294850741520947496000769, 5.89904763388088518363904025264, 5.95681555667055397919593180547, 6.20879084669067007942487517486, 7.30495770738943457952049118581, 7.43537131861627444263317650332, 8.024247643273632491999690471751