L(s) = 1 | − 6·7-s + 5·9-s + 6·17-s + 18·23-s + 10·25-s − 12·31-s + 12·41-s + 13·49-s − 30·63-s + 22·73-s + 24·79-s + 16·81-s − 16·97-s − 12·103-s − 24·113-s − 36·119-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 30·153-s + 157-s − 108·161-s + 163-s + ⋯ |
L(s) = 1 | − 2.26·7-s + 5/3·9-s + 1.45·17-s + 3.75·23-s + 2·25-s − 2.15·31-s + 1.87·41-s + 13/7·49-s − 3.77·63-s + 2.57·73-s + 2.70·79-s + 16/9·81-s − 1.62·97-s − 1.18·103-s − 2.25·113-s − 3.30·119-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 2.42·153-s + 0.0798·157-s − 8.51·161-s + 0.0783·163-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.433738716 |
L(21) |
≈ |
2.433738716 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C2 | 1+T2 |
good | 3 | C22 | 1−5T2+p2T4 |
| 5 | C2 | (1−pT2)2 |
| 7 | C2 | (1+3T+pT2)2 |
| 11 | C2 | (1−pT2)2 |
| 13 | C22 | 1−17T2+p2T4 |
| 17 | C2 | (1−3T+pT2)2 |
| 23 | C2 | (1−9T+pT2)2 |
| 29 | C22 | 1+23T2+p2T4 |
| 31 | C2 | (1+6T+pT2)2 |
| 37 | C22 | 1−38T2+p2T4 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−22T2+p2T4 |
| 47 | C2 | (1+pT2)2 |
| 53 | C22 | 1−25T2+p2T4 |
| 59 | C22 | 1−109T2+p2T4 |
| 61 | C22 | 1−86T2+p2T4 |
| 67 | C22 | 1−109T2+p2T4 |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1−11T+pT2)2 |
| 79 | C2 | (1−12T+pT2)2 |
| 83 | C22 | 1−130T2+p2T4 |
| 89 | C2 | (1+pT2)2 |
| 97 | C2 | (1+8T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.661165550558986193511889780429, −9.452082351369450189442281696885, −9.338297278609692927807365341382, −9.064455935931297151545476565667, −8.312700185860270809450382307879, −7.77307587699736122115391753624, −7.16052590256910063539794378756, −7.08070584991519485848520445672, −6.69205073326629599870617058586, −6.50250727412608230979435762145, −5.55270838919019823822788404583, −5.43690883218433792305781071075, −4.79260310657974610597233093823, −4.35336587019880043428892678064, −3.46764598695459551704989318974, −3.39567998387535460812683799868, −3.01000527337709967171374865417, −2.24773209460051432385704753352, −1.09513157184347448438907192422, −0.859629915268150574693685825194,
0.859629915268150574693685825194, 1.09513157184347448438907192422, 2.24773209460051432385704753352, 3.01000527337709967171374865417, 3.39567998387535460812683799868, 3.46764598695459551704989318974, 4.35336587019880043428892678064, 4.79260310657974610597233093823, 5.43690883218433792305781071075, 5.55270838919019823822788404583, 6.50250727412608230979435762145, 6.69205073326629599870617058586, 7.08070584991519485848520445672, 7.16052590256910063539794378756, 7.77307587699736122115391753624, 8.312700185860270809450382307879, 9.064455935931297151545476565667, 9.338297278609692927807365341382, 9.452082351369450189442281696885, 9.661165550558986193511889780429