L(s) = 1 | − 3-s + 3·5-s + 3·9-s + 9·13-s − 3·15-s − 3·17-s − 8·19-s + 9·23-s + 5·25-s − 8·27-s − 15·29-s − 8·31-s − 9·39-s + 15·41-s + 21·43-s + 9·45-s − 3·47-s + 2·49-s + 3·51-s − 3·53-s + 8·57-s + 3·59-s + 7·61-s + 27·65-s + 5·67-s − 9·69-s + 9·71-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.34·5-s + 9-s + 2.49·13-s − 0.774·15-s − 0.727·17-s − 1.83·19-s + 1.87·23-s + 25-s − 1.53·27-s − 2.78·29-s − 1.43·31-s − 1.44·39-s + 2.34·41-s + 3.20·43-s + 1.34·45-s − 0.437·47-s + 2/7·49-s + 0.420·51-s − 0.412·53-s + 1.05·57-s + 0.390·59-s + 0.896·61-s + 3.34·65-s + 0.610·67-s − 1.08·69-s + 1.06·71-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.780464501 |
L(21) |
≈ |
2.780464501 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C2 | 1+8T+pT2 |
good | 3 | C22 | 1+T−2T2+pT3+p2T4 |
| 5 | C22 | 1−3T+4T2−3pT3+p2T4 |
| 7 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−10T2+p2T4 |
| 13 | C2 | (1−7T+pT2)(1−2T+pT2) |
| 17 | C22 | 1+3T−8T2+3pT3+p2T4 |
| 23 | C22 | 1−9T+50T2−9pT3+p2T4 |
| 29 | C22 | 1+15T+104T2+15pT3+p2T4 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1−pT2)2 |
| 41 | C22 | 1−15T+116T2−15pT3+p2T4 |
| 43 | C2 | (1−13T+pT2)(1−8T+pT2) |
| 47 | C22 | 1+3T+50T2+3pT3+p2T4 |
| 53 | C22 | 1+3T+56T2+3pT3+p2T4 |
| 59 | C22 | 1−3T−50T2−3pT3+p2T4 |
| 61 | C22 | 1−7T−12T2−7pT3+p2T4 |
| 67 | C2 | (1−16T+pT2)(1+11T+pT2) |
| 71 | C22 | 1−9T+10T2−9pT3+p2T4 |
| 73 | C2 | (1−10T+pT2)(1+17T+pT2) |
| 79 | C22 | 1+7T−30T2+7pT3+p2T4 |
| 83 | C22 | 1−154T2+p2T4 |
| 89 | C22 | 1−15T+164T2−15pT3+p2T4 |
| 97 | C22 | 1−15T+172T2−15pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.724165523659296014536123864329, −9.567417471854815428389699516948, −9.026401424049172458813536877265, −8.906913540367312830580931253511, −8.625195403831133538920950547536, −7.57952143238493308166712039607, −7.56135636124548621508590370800, −7.00858219441326338529177599117, −6.32311778038392638116919414732, −6.22964477203102781360121394165, −5.75115739975073853379409614386, −5.55352417425657020935876995112, −4.91461467707331657764700480005, −4.07566690105295550910967944583, −4.03490186099514628124440792627, −3.51936560331470584323808025152, −2.44365474790947137102396523328, −2.06138151206960961211917415235, −1.49797549079084728521024767004, −0.78678816353653160920299950479,
0.78678816353653160920299950479, 1.49797549079084728521024767004, 2.06138151206960961211917415235, 2.44365474790947137102396523328, 3.51936560331470584323808025152, 4.03490186099514628124440792627, 4.07566690105295550910967944583, 4.91461467707331657764700480005, 5.55352417425657020935876995112, 5.75115739975073853379409614386, 6.22964477203102781360121394165, 6.32311778038392638116919414732, 7.00858219441326338529177599117, 7.56135636124548621508590370800, 7.57952143238493308166712039607, 8.625195403831133538920950547536, 8.906913540367312830580931253511, 9.026401424049172458813536877265, 9.567417471854815428389699516948, 9.724165523659296014536123864329