L(s) = 1 | − 3-s + 5-s + 6·7-s − 9-s + 3·11-s − 13-s − 15-s − 8·17-s − 2·19-s − 6·21-s + 7·23-s − 5·25-s + 3·29-s + 10·31-s − 3·33-s + 6·35-s − 6·37-s + 39-s + 8·41-s − 15·43-s − 45-s + 5·47-s + 13·49-s + 8·51-s + 13·53-s + 3·55-s + 2·57-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 2.26·7-s − 1/3·9-s + 0.904·11-s − 0.277·13-s − 0.258·15-s − 1.94·17-s − 0.458·19-s − 1.30·21-s + 1.45·23-s − 25-s + 0.557·29-s + 1.79·31-s − 0.522·33-s + 1.01·35-s − 0.986·37-s + 0.160·39-s + 1.24·41-s − 2.28·43-s − 0.149·45-s + 0.729·47-s + 13/7·49-s + 1.12·51-s + 1.78·53-s + 0.404·55-s + 0.264·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1478656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.506155261\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.506155261\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 19 | $C_1$ | \( ( 1 + T )^{2} \) |
good | 3 | $D_{4}$ | \( 1 + T + 2 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 5 | $D_{4}$ | \( 1 - T + 6 T^{2} - p T^{3} + p^{2} T^{4} \) |
| 7 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 11 | $D_{4}$ | \( 1 - 3 T + 20 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 13 | $D_{4}$ | \( 1 + T + 22 T^{2} + p T^{3} + p^{2} T^{4} \) |
| 17 | $D_{4}$ | \( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} \) |
| 23 | $D_{4}$ | \( 1 - 7 T + 54 T^{2} - 7 p T^{3} + p^{2} T^{4} \) |
| 29 | $D_{4}$ | \( 1 - 3 T + 22 T^{2} - 3 p T^{3} + p^{2} T^{4} \) |
| 31 | $D_{4}$ | \( 1 - 10 T + 70 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 37 | $D_{4}$ | \( 1 + 6 T + 66 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 41 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 43 | $D_{4}$ | \( 1 + 15 T + 138 T^{2} + 15 p T^{3} + p^{2} T^{4} \) |
| 47 | $D_{4}$ | \( 1 - 5 T + 62 T^{2} - 5 p T^{3} + p^{2} T^{4} \) |
| 53 | $D_{4}$ | \( 1 - 13 T + 144 T^{2} - 13 p T^{3} + p^{2} T^{4} \) |
| 59 | $D_{4}$ | \( 1 - 13 T + 156 T^{2} - 13 p T^{3} + p^{2} T^{4} \) |
| 61 | $D_{4}$ | \( 1 + 9 T + 36 T^{2} + 9 p T^{3} + p^{2} T^{4} \) |
| 67 | $D_{4}$ | \( 1 - 5 T + 136 T^{2} - 5 p T^{3} + p^{2} T^{4} \) |
| 71 | $D_{4}$ | \( 1 - 8 T + 90 T^{2} - 8 p T^{3} + p^{2} T^{4} \) |
| 73 | $D_{4}$ | \( 1 + 2 T + 79 T^{2} + 2 p T^{3} + p^{2} T^{4} \) |
| 79 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 83 | $D_{4}$ | \( 1 - 10 T + 38 T^{2} - 10 p T^{3} + p^{2} T^{4} \) |
| 89 | $D_{4}$ | \( 1 + 6 T + 34 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 97 | $D_{4}$ | \( 1 - 6 T + 186 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.921425562901589940143362404457, −9.575906939164834266073419789204, −8.843029389839722896636014799722, −8.818487832315039984289995285059, −8.290837099466879740148326930035, −8.103142064317069914001051227230, −7.45600856960558964340236169379, −6.92550031419923925262283436369, −6.57252096985603075527736830354, −6.33829063977038368175117962003, −5.47284661848185631628299995762, −5.38001367173071177485282582669, −4.66217418734000829038686331613, −4.60916292509951064396535128823, −4.07718997671769238739851566286, −3.34944380474305733188639208898, −2.35216058809248867116473619110, −2.17863654002928259345487141033, −1.48887825491620288011874390771, −0.73962667314684707641375373116,
0.73962667314684707641375373116, 1.48887825491620288011874390771, 2.17863654002928259345487141033, 2.35216058809248867116473619110, 3.34944380474305733188639208898, 4.07718997671769238739851566286, 4.60916292509951064396535128823, 4.66217418734000829038686331613, 5.38001367173071177485282582669, 5.47284661848185631628299995762, 6.33829063977038368175117962003, 6.57252096985603075527736830354, 6.92550031419923925262283436369, 7.45600856960558964340236169379, 8.103142064317069914001051227230, 8.290837099466879740148326930035, 8.818487832315039984289995285059, 8.843029389839722896636014799722, 9.575906939164834266073419789204, 9.921425562901589940143362404457