L(s) = 1 | − 3-s + 5-s + 6·7-s − 9-s + 3·11-s − 13-s − 15-s − 8·17-s − 2·19-s − 6·21-s + 7·23-s − 5·25-s + 3·29-s + 10·31-s − 3·33-s + 6·35-s − 6·37-s + 39-s + 8·41-s − 15·43-s − 45-s + 5·47-s + 13·49-s + 8·51-s + 13·53-s + 3·55-s + 2·57-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 2.26·7-s − 1/3·9-s + 0.904·11-s − 0.277·13-s − 0.258·15-s − 1.94·17-s − 0.458·19-s − 1.30·21-s + 1.45·23-s − 25-s + 0.557·29-s + 1.79·31-s − 0.522·33-s + 1.01·35-s − 0.986·37-s + 0.160·39-s + 1.24·41-s − 2.28·43-s − 0.149·45-s + 0.729·47-s + 13/7·49-s + 1.12·51-s + 1.78·53-s + 0.404·55-s + 0.264·57-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.506155261 |
L(21) |
≈ |
2.506155261 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C1 | (1+T)2 |
good | 3 | D4 | 1+T+2T2+pT3+p2T4 |
| 5 | D4 | 1−T+6T2−pT3+p2T4 |
| 7 | C2 | (1−3T+pT2)2 |
| 11 | D4 | 1−3T+20T2−3pT3+p2T4 |
| 13 | D4 | 1+T+22T2+pT3+p2T4 |
| 17 | D4 | 1+8T+33T2+8pT3+p2T4 |
| 23 | D4 | 1−7T+54T2−7pT3+p2T4 |
| 29 | D4 | 1−3T+22T2−3pT3+p2T4 |
| 31 | D4 | 1−10T+70T2−10pT3+p2T4 |
| 37 | D4 | 1+6T+66T2+6pT3+p2T4 |
| 41 | C2 | (1−4T+pT2)2 |
| 43 | D4 | 1+15T+138T2+15pT3+p2T4 |
| 47 | D4 | 1−5T+62T2−5pT3+p2T4 |
| 53 | D4 | 1−13T+144T2−13pT3+p2T4 |
| 59 | D4 | 1−13T+156T2−13pT3+p2T4 |
| 61 | D4 | 1+9T+36T2+9pT3+p2T4 |
| 67 | D4 | 1−5T+136T2−5pT3+p2T4 |
| 71 | D4 | 1−8T+90T2−8pT3+p2T4 |
| 73 | D4 | 1+2T+79T2+2pT3+p2T4 |
| 79 | C2 | (1−10T+pT2)2 |
| 83 | D4 | 1−10T+38T2−10pT3+p2T4 |
| 89 | D4 | 1+6T+34T2+6pT3+p2T4 |
| 97 | D4 | 1−6T+186T2−6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.921425562901589940143362404457, −9.575906939164834266073419789204, −8.843029389839722896636014799722, −8.818487832315039984289995285059, −8.290837099466879740148326930035, −8.103142064317069914001051227230, −7.45600856960558964340236169379, −6.92550031419923925262283436369, −6.57252096985603075527736830354, −6.33829063977038368175117962003, −5.47284661848185631628299995762, −5.38001367173071177485282582669, −4.66217418734000829038686331613, −4.60916292509951064396535128823, −4.07718997671769238739851566286, −3.34944380474305733188639208898, −2.35216058809248867116473619110, −2.17863654002928259345487141033, −1.48887825491620288011874390771, −0.73962667314684707641375373116,
0.73962667314684707641375373116, 1.48887825491620288011874390771, 2.17863654002928259345487141033, 2.35216058809248867116473619110, 3.34944380474305733188639208898, 4.07718997671769238739851566286, 4.60916292509951064396535128823, 4.66217418734000829038686331613, 5.38001367173071177485282582669, 5.47284661848185631628299995762, 6.33829063977038368175117962003, 6.57252096985603075527736830354, 6.92550031419923925262283436369, 7.45600856960558964340236169379, 8.103142064317069914001051227230, 8.290837099466879740148326930035, 8.818487832315039984289995285059, 8.843029389839722896636014799722, 9.575906939164834266073419789204, 9.921425562901589940143362404457