L(s) = 1 | + 3-s − 5-s + 3·9-s − 8·11-s − 13-s − 15-s − 3·17-s − 8·19-s + 5·23-s + 5·25-s + 8·27-s + 7·29-s − 8·31-s − 8·33-s − 20·37-s − 39-s + 5·41-s + 5·43-s − 3·45-s − 7·47-s − 14·49-s − 3·51-s + 11·53-s + 8·55-s − 8·57-s − 3·59-s + 11·61-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s + 9-s − 2.41·11-s − 0.277·13-s − 0.258·15-s − 0.727·17-s − 1.83·19-s + 1.04·23-s + 25-s + 1.53·27-s + 1.29·29-s − 1.43·31-s − 1.39·33-s − 3.28·37-s − 0.160·39-s + 0.780·41-s + 0.762·43-s − 0.447·45-s − 1.02·47-s − 2·49-s − 0.420·51-s + 1.51·53-s + 1.07·55-s − 1.05·57-s − 0.390·59-s + 1.40·61-s + ⋯ |
Λ(s)=(=(1478656s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1478656s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1478656
= 212⋅192
|
Sign: |
1
|
Analytic conductor: |
94.2803 |
Root analytic conductor: |
3.11605 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1478656, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.165091905 |
L(21) |
≈ |
1.165091905 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 19 | C2 | 1+8T+pT2 |
good | 3 | C22 | 1−T−2T2−pT3+p2T4 |
| 5 | C22 | 1+T−4T2+pT3+p2T4 |
| 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C22 | 1+T−12T2+pT3+p2T4 |
| 17 | C22 | 1+3T−8T2+3pT3+p2T4 |
| 23 | C22 | 1−5T+2T2−5pT3+p2T4 |
| 29 | C22 | 1−7T+20T2−7pT3+p2T4 |
| 31 | C2 | (1+4T+pT2)2 |
| 37 | C2 | (1+10T+pT2)2 |
| 41 | C22 | 1−5T−16T2−5pT3+p2T4 |
| 43 | C2 | (1−13T+pT2)(1+8T+pT2) |
| 47 | C22 | 1+7T+2T2+7pT3+p2T4 |
| 53 | C22 | 1−11T+68T2−11pT3+p2T4 |
| 59 | C22 | 1+3T−50T2+3pT3+p2T4 |
| 61 | C22 | 1−11T+60T2−11pT3+p2T4 |
| 67 | C22 | 1−3T−58T2−3pT3+p2T4 |
| 71 | C22 | 1−11T+50T2−11pT3+p2T4 |
| 73 | C22 | 1+15T+152T2+15pT3+p2T4 |
| 79 | C2 | (1−4T+pT2)(1+17T+pT2) |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1+3T−80T2+3pT3+p2T4 |
| 97 | C2 | (1−19T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.30635681697216334422864240023, −9.513383454135585988270874709104, −8.857571436506208770288316013988, −8.690712882522587051949739378897, −8.325139298921436122740996078547, −8.108139705660945225610688135763, −7.30575442479180154324138690813, −7.04099428933538834886565069078, −7.00387469099120421651974817908, −6.26606043798695773688729472289, −5.67637069027213819610780671363, −4.93970543655673286845490453258, −4.86486881921466456229017161779, −4.53854471935038728507819800624, −3.69116018372694259187518944766, −3.28546026377520809595273889941, −2.66361088398248151877003270588, −2.29035348611369716291379545667, −1.64565947226456425102207556606, −0.42643685515750211111448020377,
0.42643685515750211111448020377, 1.64565947226456425102207556606, 2.29035348611369716291379545667, 2.66361088398248151877003270588, 3.28546026377520809595273889941, 3.69116018372694259187518944766, 4.53854471935038728507819800624, 4.86486881921466456229017161779, 4.93970543655673286845490453258, 5.67637069027213819610780671363, 6.26606043798695773688729472289, 7.00387469099120421651974817908, 7.04099428933538834886565069078, 7.30575442479180154324138690813, 8.108139705660945225610688135763, 8.325139298921436122740996078547, 8.690712882522587051949739378897, 8.857571436506208770288316013988, 9.513383454135585988270874709104, 10.30635681697216334422864240023