L(s) = 1 | − 2-s − 2·3-s − 4-s + 2·6-s + 3·8-s + 3·9-s − 8·11-s + 2·12-s − 16-s + 4·17-s − 3·18-s + 8·19-s + 8·22-s − 6·24-s + 25-s − 4·27-s − 5·32-s + 16·33-s − 4·34-s − 3·36-s − 8·38-s + 20·41-s + 8·43-s + 8·44-s + 2·48-s − 14·49-s − 50-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.816·6-s + 1.06·8-s + 9-s − 2.41·11-s + 0.577·12-s − 1/4·16-s + 0.970·17-s − 0.707·18-s + 1.83·19-s + 1.70·22-s − 1.22·24-s + 1/5·25-s − 0.769·27-s − 0.883·32-s + 2.78·33-s − 0.685·34-s − 1/2·36-s − 1.29·38-s + 3.12·41-s + 1.21·43-s + 1.20·44-s + 0.288·48-s − 2·49-s − 0.141·50-s + ⋯ |
Λ(s)=(=(14400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(14400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
14400
= 26⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
0.918156 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 14400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3952199604 |
L(21) |
≈ |
0.3952199604 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+pT2 |
| 3 | C1 | (1+T)2 |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1+pT2)2 |
| 11 | C2 | (1+4T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 67 | C2 | (1−12T+pT2)2 |
| 71 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−12T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.98983893146666191058257315512, −10.67892245123374144028858824682, −10.09004766089519189801221596346, −9.523451675812284265792380668213, −9.339349995423015885465559763611, −8.074746559817531846840486780032, −7.67749235610857150327119620769, −7.66488013441745380243230842523, −6.56365355473852823699216167747, −5.63406482120703248001185629214, −5.23920392624592057055772361749, −4.87700802399738744801917392626, −3.76558570458913747879946495025, −2.61544872003966305633910980827, −0.870154925974925884967934945032,
0.870154925974925884967934945032, 2.61544872003966305633910980827, 3.76558570458913747879946495025, 4.87700802399738744801917392626, 5.23920392624592057055772361749, 5.63406482120703248001185629214, 6.56365355473852823699216167747, 7.66488013441745380243230842523, 7.67749235610857150327119620769, 8.074746559817531846840486780032, 9.339349995423015885465559763611, 9.523451675812284265792380668213, 10.09004766089519189801221596346, 10.67892245123374144028858824682, 10.98983893146666191058257315512