L(s) = 1 | − 2-s − 2·3-s − 4-s + 2·6-s + 3·8-s + 3·9-s − 8·11-s + 2·12-s − 16-s + 4·17-s − 3·18-s + 8·19-s + 8·22-s − 6·24-s + 25-s − 4·27-s − 5·32-s + 16·33-s − 4·34-s − 3·36-s − 8·38-s + 20·41-s + 8·43-s + 8·44-s + 2·48-s − 14·49-s − 50-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.15·3-s − 1/2·4-s + 0.816·6-s + 1.06·8-s + 9-s − 2.41·11-s + 0.577·12-s − 1/4·16-s + 0.970·17-s − 0.707·18-s + 1.83·19-s + 1.70·22-s − 1.22·24-s + 1/5·25-s − 0.769·27-s − 0.883·32-s + 2.78·33-s − 0.685·34-s − 1/2·36-s − 1.29·38-s + 3.12·41-s + 1.21·43-s + 1.20·44-s + 0.288·48-s − 2·49-s − 0.141·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3952199604\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3952199604\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 + T + p T^{2} \) |
| 3 | $C_1$ | \( ( 1 + T )^{2} \) |
| 5 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 7 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 31 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 4 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 73 | $C_2$ | \( ( 1 - 10 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.98983893146666191058257315512, −10.67892245123374144028858824682, −10.09004766089519189801221596346, −9.523451675812284265792380668213, −9.339349995423015885465559763611, −8.074746559817531846840486780032, −7.67749235610857150327119620769, −7.66488013441745380243230842523, −6.56365355473852823699216167747, −5.63406482120703248001185629214, −5.23920392624592057055772361749, −4.87700802399738744801917392626, −3.76558570458913747879946495025, −2.61544872003966305633910980827, −0.870154925974925884967934945032,
0.870154925974925884967934945032, 2.61544872003966305633910980827, 3.76558570458913747879946495025, 4.87700802399738744801917392626, 5.23920392624592057055772361749, 5.63406482120703248001185629214, 6.56365355473852823699216167747, 7.66488013441745380243230842523, 7.67749235610857150327119620769, 8.074746559817531846840486780032, 9.339349995423015885465559763611, 9.523451675812284265792380668213, 10.09004766089519189801221596346, 10.67892245123374144028858824682, 10.98983893146666191058257315512