L(s) = 1 | − 6·3-s + 2·7-s + 27·9-s − 74·11-s + 98·13-s − 78·17-s + 80·19-s − 12·21-s − 40·23-s − 108·27-s + 50·29-s + 12·31-s + 444·33-s − 34·37-s − 588·39-s + 344·41-s − 216·43-s − 876·47-s + 478·49-s + 468·51-s − 634·53-s − 480·57-s − 666·59-s + 244·61-s + 54·63-s + 980·67-s + 240·69-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.107·7-s + 9-s − 2.02·11-s + 2.09·13-s − 1.11·17-s + 0.965·19-s − 0.124·21-s − 0.362·23-s − 0.769·27-s + 0.320·29-s + 0.0695·31-s + 2.34·33-s − 0.151·37-s − 2.41·39-s + 1.31·41-s − 0.766·43-s − 2.71·47-s + 1.39·49-s + 1.28·51-s − 1.64·53-s − 1.11·57-s − 1.46·59-s + 0.512·61-s + 0.107·63-s + 1.78·67-s + 0.418·69-s + ⋯ |
Λ(s)=(=(1440000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1440000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1440000
= 28⋅32⋅54
|
Sign: |
1
|
Analytic conductor: |
5012.96 |
Root analytic conductor: |
8.41440 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1440000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+pT)2 |
| 5 | | 1 |
good | 7 | D4 | 1−2T−474T2−2p3T3+p6T4 |
| 11 | D4 | 1+74T+3902T2+74p3T3+p6T4 |
| 13 | D4 | 1−98T+6666T2−98p3T3+p6T4 |
| 17 | D4 | 1+78T+8122T2+78p3T3+p6T4 |
| 19 | D4 | 1−80T+7062T2−80p3T3+p6T4 |
| 23 | D4 | 1+40T+16478T2+40p3T3+p6T4 |
| 29 | D4 | 1−50T+43082T2−50p3T3+p6T4 |
| 31 | D4 | 1−12T+17822T2−12p3T3+p6T4 |
| 37 | D4 | 1+34T+20970T2+34p3T3+p6T4 |
| 41 | D4 | 1−344T+162782T2−344p3T3+p6T4 |
| 43 | C2 | (1+108T+p3T2)2 |
| 47 | D4 | 1+876T+374206T2+876p3T3+p6T4 |
| 53 | D4 | 1+634T+398114T2+634p3T3+p6T4 |
| 59 | D4 | 1+666T+211918T2+666p3T3+p6T4 |
| 61 | D4 | 1−4pT+336750T2−4p4T3+p6T4 |
| 67 | D4 | 1−980T+692502T2−980p3T3+p6T4 |
| 71 | D4 | 1+308T+553262T2+308p3T3+p6T4 |
| 73 | D4 | 1+1412T+1090194T2+1412p3T3+p6T4 |
| 79 | D4 | 1+1052T+1237470T2+1052p3T3+p6T4 |
| 83 | D4 | 1+248T+1125926T2+248p3T3+p6T4 |
| 89 | D4 | 1−684T+1229686T2−684p3T3+p6T4 |
| 97 | D4 | 1+1840T+2539650T2+1840p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.134813727695630941301129936501, −8.727062162832495033338205550249, −8.188690276151103822548954148946, −8.095190877714211151420413806313, −7.42297558383710381328696778612, −7.16589876695208150011388504491, −6.35340026426278654169893536516, −6.35017905904169281722660168873, −5.72686912879348589735299017903, −5.49027878289581855034176344125, −4.80012424507694010567812018706, −4.69043599042521821225027955883, −3.99947599999390154890199283145, −3.40392273609469938900847431542, −2.92388713813338218541071789963, −2.27156924008469058727652243188, −1.47398797015446986921498309019, −1.10412142721995947334974773280, 0, 0,
1.10412142721995947334974773280, 1.47398797015446986921498309019, 2.27156924008469058727652243188, 2.92388713813338218541071789963, 3.40392273609469938900847431542, 3.99947599999390154890199283145, 4.69043599042521821225027955883, 4.80012424507694010567812018706, 5.49027878289581855034176344125, 5.72686912879348589735299017903, 6.35017905904169281722660168873, 6.35340026426278654169893536516, 7.16589876695208150011388504491, 7.42297558383710381328696778612, 8.095190877714211151420413806313, 8.188690276151103822548954148946, 8.727062162832495033338205550249, 9.134813727695630941301129936501