L(s) = 1 | + 2·4-s + 7-s + 5·13-s − 8·19-s − 10·25-s + 2·28-s − 14·31-s + 10·37-s + 13·43-s + 7·49-s + 10·52-s + 13·61-s − 8·64-s − 11·67-s + 34·73-s − 16·76-s − 26·79-s + 5·91-s − 5·97-s − 20·100-s − 26·103-s − 38·109-s + 11·121-s − 28·124-s + 127-s + 131-s − 8·133-s + ⋯ |
L(s) = 1 | + 4-s + 0.377·7-s + 1.38·13-s − 1.83·19-s − 2·25-s + 0.377·28-s − 2.51·31-s + 1.64·37-s + 1.98·43-s + 49-s + 1.38·52-s + 1.66·61-s − 64-s − 1.34·67-s + 3.97·73-s − 1.83·76-s − 2.92·79-s + 0.524·91-s − 0.507·97-s − 2·100-s − 2.56·103-s − 3.63·109-s + 121-s − 2.51·124-s + 0.0887·127-s + 0.0873·131-s − 0.693·133-s + ⋯ |
Λ(s)=(=(13689s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(13689s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
13689
= 34⋅132
|
Sign: |
1
|
Analytic conductor: |
0.872822 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 13689, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.327336550 |
L(21) |
≈ |
1.327336550 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 13 | C2 | 1−5T+pT2 |
good | 2 | C22 | 1−pT2+p2T4 |
| 5 | C2 | (1+pT2)2 |
| 7 | C2 | (1−5T+pT2)(1+4T+pT2) |
| 11 | C22 | 1−pT2+p2T4 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C2 | (1+T+pT2)(1+7T+pT2) |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C22 | 1−pT2+p2T4 |
| 31 | C2 | (1+7T+pT2)2 |
| 37 | C2 | (1−11T+pT2)(1+T+pT2) |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C2 | (1−8T+pT2)(1−5T+pT2) |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1+pT2)2 |
| 59 | C22 | 1−pT2+p2T4 |
| 61 | C2 | (1−14T+pT2)(1+T+pT2) |
| 67 | C2 | (1−5T+pT2)(1+16T+pT2) |
| 71 | C22 | 1−pT2+p2T4 |
| 73 | C2 | (1−17T+pT2)2 |
| 79 | C2 | (1+13T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C2 | (1−14T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.68878978936650234687996714425, −13.29495144815058327557878512138, −12.71655998394923824990111930580, −12.30038021614666650701412544902, −11.46977469887847279077121922683, −11.21867273264163268591275018335, −10.82091562245990221907594748138, −10.42730372558088741522092921022, −9.359902462929009005981090779922, −9.175929646603444156515207466466, −8.197187863482219290864543145817, −7.969176601547087292910961275462, −7.12479528520181278145061038849, −6.63122969102480163207734998762, −5.81473512122248334257704625242, −5.65501082476237562525325714497, −4.06267316216209923172480215955, −4.02105013198232063605481217469, −2.52895160986709551773881672407, −1.80387006944753394195323284491,
1.80387006944753394195323284491, 2.52895160986709551773881672407, 4.02105013198232063605481217469, 4.06267316216209923172480215955, 5.65501082476237562525325714497, 5.81473512122248334257704625242, 6.63122969102480163207734998762, 7.12479528520181278145061038849, 7.969176601547087292910961275462, 8.197187863482219290864543145817, 9.175929646603444156515207466466, 9.359902462929009005981090779922, 10.42730372558088741522092921022, 10.82091562245990221907594748138, 11.21867273264163268591275018335, 11.46977469887847279077121922683, 12.30038021614666650701412544902, 12.71655998394923824990111930580, 13.29495144815058327557878512138, 13.68878978936650234687996714425