L(s) = 1 | − 2·4-s + 9·7-s − 5·13-s − 6·19-s + 10·25-s − 18·28-s − 12·37-s + 13·43-s + 47·49-s + 10·52-s − 13·61-s + 8·64-s − 21·67-s + 12·76-s + 26·79-s − 45·91-s − 33·97-s − 20·100-s − 26·103-s − 11·121-s + 127-s + 131-s − 54·133-s + 137-s + 139-s + 24·148-s + 149-s + ⋯ |
L(s) = 1 | − 4-s + 3.40·7-s − 1.38·13-s − 1.37·19-s + 2·25-s − 3.40·28-s − 1.97·37-s + 1.98·43-s + 47/7·49-s + 1.38·52-s − 1.66·61-s + 64-s − 2.56·67-s + 1.37·76-s + 2.92·79-s − 4.71·91-s − 3.35·97-s − 2·100-s − 2.56·103-s − 121-s + 0.0887·127-s + 0.0873·131-s − 4.68·133-s + 0.0854·137-s + 0.0848·139-s + 1.97·148-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(13689s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(13689s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
13689
= 34⋅132
|
Sign: |
1
|
Analytic conductor: |
0.872822 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 13689, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.104410767 |
L(21) |
≈ |
1.104410767 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 13 | C2 | 1+5T+pT2 |
good | 2 | C22 | 1+pT2+p2T4 |
| 5 | C2 | (1−pT2)2 |
| 7 | C2 | (1−5T+pT2)(1−4T+pT2) |
| 11 | C22 | 1+pT2+p2T4 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C2 | (1−T+pT2)(1+7T+pT2) |
| 23 | C22 | 1−pT2+p2T4 |
| 29 | C22 | 1−pT2+p2T4 |
| 31 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 37 | C2 | (1+T+pT2)(1+11T+pT2) |
| 41 | C22 | 1+pT2+p2T4 |
| 43 | C2 | (1−8T+pT2)(1−5T+pT2) |
| 47 | C2 | (1−pT2)2 |
| 53 | C2 | (1+pT2)2 |
| 59 | C22 | 1+pT2+p2T4 |
| 61 | C2 | (1−T+pT2)(1+14T+pT2) |
| 67 | C2 | (1+5T+pT2)(1+16T+pT2) |
| 71 | C22 | 1+pT2+p2T4 |
| 73 | C2 | (1−17T+pT2)(1+17T+pT2) |
| 79 | C2 | (1−13T+pT2)2 |
| 83 | C2 | (1−pT2)2 |
| 89 | C22 | 1+pT2+p2T4 |
| 97 | C2 | (1+14T+pT2)(1+19T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.81279173160257393401615679087, −13.62694379516947677042840371391, −12.46427648873793078139292504378, −12.37128003121127970556062776597, −11.80718845771292300073660906113, −11.01560413161178701888136302047, −10.69394454445487923535021362642, −10.50640332215871967047634143278, −9.162552205587415278270033255433, −9.067439377155730272574142174468, −8.328349868159648652891769166710, −8.047159372711070323146310603239, −7.41249293760598380020186165924, −6.78510443580637797647023510823, −5.43648123126854160264107828925, −5.10354134532696297849656395253, −4.44536589169225904437065558856, −4.35334440313498098980548492336, −2.51377898048347983367857045794, −1.56257140765442249388862088029,
1.56257140765442249388862088029, 2.51377898048347983367857045794, 4.35334440313498098980548492336, 4.44536589169225904437065558856, 5.10354134532696297849656395253, 5.43648123126854160264107828925, 6.78510443580637797647023510823, 7.41249293760598380020186165924, 8.047159372711070323146310603239, 8.328349868159648652891769166710, 9.067439377155730272574142174468, 9.162552205587415278270033255433, 10.50640332215871967047634143278, 10.69394454445487923535021362642, 11.01560413161178701888136302047, 11.80718845771292300073660906113, 12.37128003121127970556062776597, 12.46427648873793078139292504378, 13.62694379516947677042840371391, 13.81279173160257393401615679087