L(s) = 1 | − 3·2-s − 3·3-s + 4·4-s − 3·5-s + 9·6-s − 3·8-s + 6·9-s + 9·10-s − 6·11-s − 12·12-s − 5·13-s + 9·15-s + 3·16-s − 3·17-s − 18·18-s − 3·19-s − 12·20-s + 18·22-s − 6·23-s + 9·24-s + 25-s + 15·26-s − 9·27-s + 6·29-s − 27·30-s − 15·31-s − 6·32-s + ⋯ |
L(s) = 1 | − 2.12·2-s − 1.73·3-s + 2·4-s − 1.34·5-s + 3.67·6-s − 1.06·8-s + 2·9-s + 2.84·10-s − 1.80·11-s − 3.46·12-s − 1.38·13-s + 2.32·15-s + 3/4·16-s − 0.727·17-s − 4.24·18-s − 0.688·19-s − 2.68·20-s + 3.83·22-s − 1.25·23-s + 1.83·24-s + 1/5·25-s + 2.94·26-s − 1.73·27-s + 1.11·29-s − 4.92·30-s − 2.69·31-s − 1.06·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13689 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 3 | $C_2$ | \( 1 + p T + p T^{2} \) |
| 13 | $C_2$ | \( 1 + 5 T + p T^{2} \) |
good | 2 | $C_2^2$ | \( 1 + 3 T + 5 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 5 | $C_2^2$ | \( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 7 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 + 6 T + 23 T^{2} + 6 p T^{3} + p^{2} T^{4} \) |
| 17 | $C_2^2$ | \( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 19 | $C_2^2$ | \( 1 + 3 T + 22 T^{2} + 3 p T^{3} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 + 3 T + p T^{2} )^{2} \) |
| 29 | $C_2^2$ | \( 1 - 6 T + 7 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 31 | $C_2$ | \( ( 1 + 4 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 41 | $C_2^2$ | \( 1 + 65 T^{2} + p^{2} T^{4} \) |
| 43 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 47 | $C_2^2$ | \( 1 + 9 T + 74 T^{2} + 9 p T^{3} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 59 | $C_2^2$ | \( 1 - 6 T + 71 T^{2} - 6 p T^{3} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + 5 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) |
| 71 | $C_2^2$ | \( 1 + 15 T + 146 T^{2} + 15 p T^{3} + p^{2} T^{4} \) |
| 73 | $C_2^2$ | \( 1 - 98 T^{2} + p^{2} T^{4} \) |
| 79 | $C_2^2$ | \( 1 - 11 T + 42 T^{2} - 11 p T^{3} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 + 9 T + 110 T^{2} + 9 p T^{3} + p^{2} T^{4} \) |
| 89 | $C_2^2$ | \( 1 - 27 T + 332 T^{2} - 27 p T^{3} + p^{2} T^{4} \) |
| 97 | $C_2^2$ | \( 1 + 49 T^{2} + p^{2} T^{4} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.98354886104095708706834147321, −12.35165226491345955772984980588, −12.03435267932437668437033047366, −11.66807984831276045420323313624, −10.84897546948938748494242978061, −10.56959718220958168531791237660, −10.27377683308262605034854737643, −9.780559707535456130152025476849, −8.923219890284389932905477106741, −8.480946020083334206735078351896, −7.72713435356032831754083300337, −7.47458363107256614223360335633, −7.03439552964069623066767208973, −6.05908241654551215166689785058, −5.29878391325248697301060944214, −4.75082974210359934621131928119, −3.79158084802677213002512374174, −2.15276262389819621973419206531, 0, 0,
2.15276262389819621973419206531, 3.79158084802677213002512374174, 4.75082974210359934621131928119, 5.29878391325248697301060944214, 6.05908241654551215166689785058, 7.03439552964069623066767208973, 7.47458363107256614223360335633, 7.72713435356032831754083300337, 8.480946020083334206735078351896, 8.923219890284389932905477106741, 9.780559707535456130152025476849, 10.27377683308262605034854737643, 10.56959718220958168531791237660, 10.84897546948938748494242978061, 11.66807984831276045420323313624, 12.03435267932437668437033047366, 12.35165226491345955772984980588, 12.98354886104095708706834147321