L(s) = 1 | − 3·2-s − 3·3-s + 4·4-s − 3·5-s + 9·6-s − 3·8-s + 6·9-s + 9·10-s − 6·11-s − 12·12-s − 5·13-s + 9·15-s + 3·16-s − 3·17-s − 18·18-s − 3·19-s − 12·20-s + 18·22-s − 6·23-s + 9·24-s + 25-s + 15·26-s − 9·27-s + 6·29-s − 27·30-s − 15·31-s − 6·32-s + ⋯ |
L(s) = 1 | − 2.12·2-s − 1.73·3-s + 2·4-s − 1.34·5-s + 3.67·6-s − 1.06·8-s + 2·9-s + 2.84·10-s − 1.80·11-s − 3.46·12-s − 1.38·13-s + 2.32·15-s + 3/4·16-s − 0.727·17-s − 4.24·18-s − 0.688·19-s − 2.68·20-s + 3.83·22-s − 1.25·23-s + 1.83·24-s + 1/5·25-s + 2.94·26-s − 1.73·27-s + 1.11·29-s − 4.92·30-s − 2.69·31-s − 1.06·32-s + ⋯ |
Λ(s)=(=(13689s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(13689s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
13689
= 34⋅132
|
Sign: |
1
|
Analytic conductor: |
0.872822 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 13689, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+pT+pT2 |
| 13 | C2 | 1+5T+pT2 |
good | 2 | C22 | 1+3T+5T2+3pT3+p2T4 |
| 5 | C22 | 1+3T+8T2+3pT3+p2T4 |
| 7 | C2 | (1−5T+pT2)(1+5T+pT2) |
| 11 | C22 | 1+6T+23T2+6pT3+p2T4 |
| 17 | C22 | 1+3T−8T2+3pT3+p2T4 |
| 19 | C22 | 1+3T+22T2+3pT3+p2T4 |
| 23 | C2 | (1+3T+pT2)2 |
| 29 | C22 | 1−6T+7T2−6pT3+p2T4 |
| 31 | C2 | (1+4T+pT2)(1+11T+pT2) |
| 37 | C2 | (1−T+pT2)(1+10T+pT2) |
| 41 | C22 | 1+65T2+p2T4 |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C22 | 1+9T+74T2+9pT3+p2T4 |
| 53 | C2 | (1−6T+pT2)2 |
| 59 | C22 | 1−6T+71T2−6pT3+p2T4 |
| 61 | C2 | (1+5T+pT2)2 |
| 67 | C2 | (1−11T+pT2)(1+11T+pT2) |
| 71 | C22 | 1+15T+146T2+15pT3+p2T4 |
| 73 | C22 | 1−98T2+p2T4 |
| 79 | C22 | 1−11T+42T2−11pT3+p2T4 |
| 83 | C22 | 1+9T+110T2+9pT3+p2T4 |
| 89 | C22 | 1−27T+332T2−27pT3+p2T4 |
| 97 | C22 | 1+49T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.98354886104095708706834147321, −12.35165226491345955772984980588, −12.03435267932437668437033047366, −11.66807984831276045420323313624, −10.84897546948938748494242978061, −10.56959718220958168531791237660, −10.27377683308262605034854737643, −9.780559707535456130152025476849, −8.923219890284389932905477106741, −8.480946020083334206735078351896, −7.72713435356032831754083300337, −7.47458363107256614223360335633, −7.03439552964069623066767208973, −6.05908241654551215166689785058, −5.29878391325248697301060944214, −4.75082974210359934621131928119, −3.79158084802677213002512374174, −2.15276262389819621973419206531, 0, 0,
2.15276262389819621973419206531, 3.79158084802677213002512374174, 4.75082974210359934621131928119, 5.29878391325248697301060944214, 6.05908241654551215166689785058, 7.03439552964069623066767208973, 7.47458363107256614223360335633, 7.72713435356032831754083300337, 8.480946020083334206735078351896, 8.923219890284389932905477106741, 9.780559707535456130152025476849, 10.27377683308262605034854737643, 10.56959718220958168531791237660, 10.84897546948938748494242978061, 11.66807984831276045420323313624, 12.03435267932437668437033047366, 12.35165226491345955772984980588, 12.98354886104095708706834147321