L(s) = 1 | − 2·3-s − 4-s + 9-s + 2·12-s + 5·13-s − 3·16-s + 6·17-s − 25-s + 4·27-s + 15·29-s − 36-s − 10·39-s − 2·43-s + 6·48-s − 13·49-s − 12·51-s − 5·52-s + 6·53-s + 19·61-s + 7·64-s − 6·68-s + 2·75-s − 20·79-s − 11·81-s − 30·87-s + 100-s − 6·101-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1/2·4-s + 1/3·9-s + 0.577·12-s + 1.38·13-s − 3/4·16-s + 1.45·17-s − 1/5·25-s + 0.769·27-s + 2.78·29-s − 1/6·36-s − 1.60·39-s − 0.304·43-s + 0.866·48-s − 1.85·49-s − 1.68·51-s − 0.693·52-s + 0.824·53-s + 2.43·61-s + 7/8·64-s − 0.727·68-s + 0.230·75-s − 2.25·79-s − 1.22·81-s − 3.21·87-s + 1/10·100-s − 0.597·101-s + ⋯ |
Λ(s)=(=(13689s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(13689s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
13689
= 34⋅132
|
Sign: |
1
|
Analytic conductor: |
0.872822 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 13689, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.6751576074 |
L(21) |
≈ |
0.6751576074 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1+2T+pT2 |
| 13 | C2 | 1−5T+pT2 |
good | 2 | C22 | 1+T2+p2T4 |
| 5 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 7 | C2 | (1−T+pT2)(1+T+pT2) |
| 11 | C2 | (1−3T+pT2)(1+3T+pT2) |
| 17 | C2 | (1−3T+pT2)2 |
| 19 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 23 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 29 | C2×C2 | (1−9T+pT2)(1−6T+pT2) |
| 31 | C22 | 1+10T2+p2T4 |
| 37 | C2 | (1−7T+pT2)(1+7T+pT2) |
| 41 | C22 | 1+10T2+p2T4 |
| 43 | C2×C2 | (1−2T+pT2)(1+4T+pT2) |
| 47 | C22 | 1−2T2+p2T4 |
| 53 | C2×C2 | (1−9T+pT2)(1+3T+pT2) |
| 59 | C22 | 1−35T2+p2T4 |
| 61 | C2×C2 | (1−14T+pT2)(1−5T+pT2) |
| 67 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 71 | C22 | 1+13T2+p2T4 |
| 73 | C22 | 1−47T2+p2T4 |
| 79 | C2 | (1+10T+pT2)2 |
| 83 | C22 | 1−119T2+p2T4 |
| 89 | C22 | 1+37T2+p2T4 |
| 97 | C22 | 1−14T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35602805723046122206829210450, −10.68389180192618923629940403141, −10.15085227464949750149406598643, −9.830828044174449564877761972139, −8.901118960746985838598890682533, −8.417598580717825745872133683050, −8.033008851926041234750244332490, −6.93008699605088141542062183856, −6.52242754969305111991545394487, −5.89619929848292488548421093648, −5.26921996746328915551854401084, −4.67556083454843451240290976455, −3.85603569322153007789294912365, −2.89344923925415568822832195876, −1.09621016892456542075964254605,
1.09621016892456542075964254605, 2.89344923925415568822832195876, 3.85603569322153007789294912365, 4.67556083454843451240290976455, 5.26921996746328915551854401084, 5.89619929848292488548421093648, 6.52242754969305111991545394487, 6.93008699605088141542062183856, 8.033008851926041234750244332490, 8.417598580717825745872133683050, 8.901118960746985838598890682533, 9.830828044174449564877761972139, 10.15085227464949750149406598643, 10.68389180192618923629940403141, 11.35602805723046122206829210450