Properties

Label 4-1170e2-1.1-c3e2-0-0
Degree $4$
Conductor $1368900$
Sign $1$
Analytic cond. $4765.44$
Root an. cond. $8.30856$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 52·13-s + 16·16-s + 108·17-s − 264·23-s − 25·25-s − 300·29-s − 356·43-s + 110·49-s − 208·52-s + 96·53-s − 1.51e3·61-s − 64·64-s − 432·68-s + 1.76e3·79-s + 1.05e3·92-s + 100·100-s − 3.80e3·101-s + 1.26e3·103-s − 2.53e3·107-s − 4.52e3·113-s + 1.20e3·116-s − 938·121-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.10·13-s + 1/4·16-s + 1.54·17-s − 2.39·23-s − 1/5·25-s − 1.92·29-s − 1.26·43-s + 0.320·49-s − 0.554·52-s + 0.248·53-s − 3.18·61-s − 1/8·64-s − 0.770·68-s + 2.50·79-s + 1.19·92-s + 1/10·100-s − 3.74·101-s + 1.20·103-s − 2.28·107-s − 3.76·113-s + 0.960·116-s − 0.704·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1368900 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1368900\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(4765.44\)
Root analytic conductor: \(8.30856\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1368900,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.05132074789\)
\(L(\frac12)\) \(\approx\) \(0.05132074789\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + p^{2} T^{2} \)
13$C_2$ \( 1 - 4 p T + p^{3} T^{2} \)
good7$C_2^2$ \( 1 - 110 T^{2} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 938 T^{2} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 54 T + p^{3} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 6662 T^{2} + p^{6} T^{4} \)
23$C_2$ \( ( 1 + 132 T + p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 + 150 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 37082 T^{2} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 24010 T^{2} + p^{6} T^{4} \)
41$C_2^2$ \( 1 - 80242 T^{2} + p^{6} T^{4} \)
43$C_2$ \( ( 1 + 178 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 102670 T^{2} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 48 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 73658 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 + 758 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 577190 T^{2} + p^{6} T^{4} \)
71$C_2^2$ \( 1 - 671722 T^{2} + p^{6} T^{4} \)
73$C_2^2$ \( 1 - 711470 T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 880 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 + 630650 T^{2} + p^{6} T^{4} \)
89$C_2^2$ \( 1 - 942082 T^{2} + p^{6} T^{4} \)
97$C_2^2$ \( 1 - 1820990 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.719116680903302097302460875917, −9.260388973204329470984309790961, −8.867725693022668906483224611098, −8.204616342891092221736657726812, −7.909901973732622320091796728925, −7.85433128227709884352282050064, −7.24723168884636210338366401499, −6.55885603090972775165401510572, −6.15500415505209135856662590209, −5.89058041177730080419526616273, −5.22616205349839959159020440973, −5.19074119240301858177977768093, −4.19058203707643701651522025903, −3.82711494684113931242819072999, −3.69491314809903160980608264118, −2.97712311487418114780225734775, −2.28671799646428740009695308217, −1.41179447605470368376360775113, −1.37429633908248835721373436574, −0.05519925980954676636600711217, 0.05519925980954676636600711217, 1.37429633908248835721373436574, 1.41179447605470368376360775113, 2.28671799646428740009695308217, 2.97712311487418114780225734775, 3.69491314809903160980608264118, 3.82711494684113931242819072999, 4.19058203707643701651522025903, 5.19074119240301858177977768093, 5.22616205349839959159020440973, 5.89058041177730080419526616273, 6.15500415505209135856662590209, 6.55885603090972775165401510572, 7.24723168884636210338366401499, 7.85433128227709884352282050064, 7.909901973732622320091796728925, 8.204616342891092221736657726812, 8.867725693022668906483224611098, 9.260388973204329470984309790961, 9.719116680903302097302460875917

Graph of the $Z$-function along the critical line