L(s) = 1 | − 64·7-s + 196·17-s − 64·23-s + 106·25-s − 512·31-s + 204·41-s + 640·47-s + 2.38e3·49-s + 832·71-s − 276·73-s − 128·79-s − 1.16e3·89-s + 476·97-s + 1.98e3·103-s + 604·113-s − 1.25e4·119-s + 2.59e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 4.09e3·161-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 3.45·7-s + 2.79·17-s − 0.580·23-s + 0.847·25-s − 2.96·31-s + 0.777·41-s + 1.98·47-s + 6.95·49-s + 1.39·71-s − 0.442·73-s − 0.182·79-s − 1.38·89-s + 0.498·97-s + 1.89·103-s + 0.502·113-s − 9.66·119-s + 1.95·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 2.00·161-s + 0.000480·163-s + 0.000463·167-s + ⋯ |
Λ(s)=(=(1327104s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(1327104s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1327104
= 214⋅34
|
Sign: |
1
|
Analytic conductor: |
4619.94 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1327104, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
1.830119929 |
L(21) |
≈ |
1.830119929 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | 1−106T2+p6T4 |
| 7 | C2 | (1+32T+p3T2)2 |
| 11 | C22 | 1−2598T2+p6T4 |
| 13 | C22 | 1−3994T2+p6T4 |
| 17 | C2 | (1−98T+p3T2)2 |
| 19 | C22 | 1−5974T2+p6T4 |
| 23 | C2 | (1+32T+p3T2)2 |
| 29 | C22 | 1−19194T2+p6T4 |
| 31 | C2 | (1+256T+p3T2)2 |
| 37 | C22 | 1−92842T2+p6T4 |
| 41 | C2 | (1−102T+p3T2)2 |
| 43 | C22 | 1−71398T2+p6T4 |
| 47 | C2 | (1−320T+p3T2)2 |
| 53 | C22 | 1−291978T2+p6T4 |
| 59 | C22 | 1−244294T2+p6T4 |
| 61 | C22 | 1−49466T2+p6T4 |
| 67 | C22 | 1−296822T2+p6T4 |
| 71 | C2 | (1−416T+p3T2)2 |
| 73 | C2 | (1+138T+p3T2)2 |
| 79 | C2 | (1+64T+p3T2)2 |
| 83 | C22 | 1−989910T2+p6T4 |
| 89 | C2 | (1+582T+p3T2)2 |
| 97 | C2 | (1−238T+p3T2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.666664658809018361517647869113, −9.392656189466090410047124048107, −8.890809329735441799240492357002, −8.674862319785661612836621078538, −7.66418723613323904447223764772, −7.58914452445000718275572054090, −7.07104639519245952422796475666, −6.79746673901580801844728352654, −6.15714614460348207807664741314, −5.85967078359538650728688935205, −5.60699025300210885792316331158, −5.17957456048342191021504473275, −4.00312819470748420122643950859, −3.88892057072972161905692027248, −3.25915613963670719844321856028, −3.15367373787743586084644408835, −2.59077756564567735159746202525, −1.74096922812398386298285286014, −0.67341887266093627643859601061, −0.52020198516688606631277704698,
0.52020198516688606631277704698, 0.67341887266093627643859601061, 1.74096922812398386298285286014, 2.59077756564567735159746202525, 3.15367373787743586084644408835, 3.25915613963670719844321856028, 3.88892057072972161905692027248, 4.00312819470748420122643950859, 5.17957456048342191021504473275, 5.60699025300210885792316331158, 5.85967078359538650728688935205, 6.15714614460348207807664741314, 6.79746673901580801844728352654, 7.07104639519245952422796475666, 7.58914452445000718275572054090, 7.66418723613323904447223764772, 8.674862319785661612836621078538, 8.890809329735441799240492357002, 9.392656189466090410047124048107, 9.666664658809018361517647869113