L(s) = 1 | + 8·7-s + 9-s − 4·17-s − 16·23-s + 25-s + 20·41-s + 16·47-s + 34·49-s + 8·63-s − 28·73-s + 32·79-s + 81-s + 4·89-s + 4·97-s + 8·103-s + 12·113-s − 32·119-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s − 128·161-s + ⋯ |
L(s) = 1 | + 3.02·7-s + 1/3·9-s − 0.970·17-s − 3.33·23-s + 1/5·25-s + 3.12·41-s + 2.33·47-s + 34/7·49-s + 1.00·63-s − 3.27·73-s + 3.60·79-s + 1/9·81-s + 0.423·89-s + 0.406·97-s + 0.788·103-s + 1.12·113-s − 2.93·119-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.323·153-s + 0.0798·157-s − 10.0·161-s + ⋯ |
Λ(s)=(=(115200s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(115200s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
115200
= 29⋅32⋅52
|
Sign: |
1
|
Analytic conductor: |
7.34525 |
Root analytic conductor: |
1.64627 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 115200, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.191749975 |
L(21) |
≈ |
2.191749975 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1×C1 | (1−T)(1+T) |
| 5 | C1×C1 | (1−T)(1+T) |
good | 7 | C2 | (1−4T+pT2)2 |
| 11 | C2 | (1+pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 23 | C2 | (1+8T+pT2)2 |
| 29 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 47 | C2 | (1−8T+pT2)2 |
| 53 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 59 | C2 | (1+pT2)2 |
| 61 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 67 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C2 | (1+14T+pT2)2 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.138788409882082860623313179234, −9.082691646086291194533627292052, −8.338450200049268291048738447687, −7.929044973464791963060046214031, −7.64493796343622540106320647343, −7.34594365176835478558310775458, −6.25442273107448540439252397130, −5.92809906508794084871962623137, −5.28897888504504330389281711769, −4.67467612086321652791764027956, −4.13728859524865050162716547657, −4.05477376880357436694530570270, −2.25919867640796924053383456153, −2.19180563382997996757520036314, −1.20192952395638838673519576448,
1.20192952395638838673519576448, 2.19180563382997996757520036314, 2.25919867640796924053383456153, 4.05477376880357436694530570270, 4.13728859524865050162716547657, 4.67467612086321652791764027956, 5.28897888504504330389281711769, 5.92809906508794084871962623137, 6.25442273107448540439252397130, 7.34594365176835478558310775458, 7.64493796343622540106320647343, 7.929044973464791963060046214031, 8.338450200049268291048738447687, 9.082691646086291194533627292052, 9.138788409882082860623313179234