L(s) = 1 | − 2·2-s − 2·3-s + 3·4-s + 2·5-s + 4·6-s − 7-s − 4·8-s + 3·9-s − 4·10-s + 3·11-s − 6·12-s − 3·13-s + 2·14-s − 4·15-s + 5·16-s + 3·17-s − 6·18-s + 3·19-s + 6·20-s + 2·21-s − 6·22-s + 23-s + 8·24-s + 3·25-s + 6·26-s − 4·27-s − 3·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 3/2·4-s + 0.894·5-s + 1.63·6-s − 0.377·7-s − 1.41·8-s + 9-s − 1.26·10-s + 0.904·11-s − 1.73·12-s − 0.832·13-s + 0.534·14-s − 1.03·15-s + 5/4·16-s + 0.727·17-s − 1.41·18-s + 0.688·19-s + 1.34·20-s + 0.436·21-s − 1.27·22-s + 0.208·23-s + 1.63·24-s + 3/5·25-s + 1.17·26-s − 0.769·27-s − 0.566·28-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9878845338 |
L(21) |
≈ |
0.9878845338 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)2 |
| 3 | C1 | (1+T)2 |
| 5 | C1 | (1−T)2 |
| 37 | C1 | (1+T)2 |
good | 7 | D4 | 1+T+6T2+pT3+p2T4 |
| 11 | D4 | 1−3T+16T2−3pT3+p2T4 |
| 13 | D4 | 1+3T+20T2+3pT3+p2T4 |
| 17 | D4 | 1−3T+28T2−3pT3+p2T4 |
| 19 | D4 | 1−3T+32T2−3pT3+p2T4 |
| 23 | D4 | 1−T+38T2−pT3+p2T4 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | D4 | 1+6T+38T2+6pT3+p2T4 |
| 41 | D4 | 1−6T+58T2−6pT3+p2T4 |
| 43 | C2 | (1+4T+pT2)2 |
| 47 | D4 | 1−2T+62T2−2pT3+p2T4 |
| 53 | D4 | 1−5T+104T2−5pT3+p2T4 |
| 59 | D4 | 1−18T+166T2−18pT3+p2T4 |
| 61 | D4 | 1−6T+98T2−6pT3+p2T4 |
| 67 | D4 | 1+6T+110T2+6pT3+p2T4 |
| 71 | D4 | 1−14T+158T2−14pT3+p2T4 |
| 73 | D4 | 1−9T+92T2−9pT3+p2T4 |
| 79 | C2 | (1−4T+pT2)2 |
| 83 | D4 | 1−7T+170T2−7pT3+p2T4 |
| 89 | D4 | 1−21T+280T2−21pT3+p2T4 |
| 97 | D4 | 1−4T+66T2−4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.949991477259471093589151146249, −9.785166473869818352386352040370, −9.233962082308994120919370484186, −9.132533672252278719758903061035, −8.362721335182838771891454882484, −8.166292991905687590382797175022, −7.37109103034187218877082252533, −7.19383089129740938666023607805, −6.64367677864087529475494925552, −6.49574926978295521754769688108, −5.91323595865813664960378916141, −5.58163714663183829670662499015, −4.89680318143745927342182143807, −4.78377900172501744495823396513, −3.57733667604527650710703646354, −3.41648934671731639952703452985, −2.35880976293082522865229911219, −2.06079048662367972003274439679, −1.04556555540668435101019840246, −0.75820356854681945346810287386,
0.75820356854681945346810287386, 1.04556555540668435101019840246, 2.06079048662367972003274439679, 2.35880976293082522865229911219, 3.41648934671731639952703452985, 3.57733667604527650710703646354, 4.78377900172501744495823396513, 4.89680318143745927342182143807, 5.58163714663183829670662499015, 5.91323595865813664960378916141, 6.49574926978295521754769688108, 6.64367677864087529475494925552, 7.19383089129740938666023607805, 7.37109103034187218877082252533, 8.166292991905687590382797175022, 8.362721335182838771891454882484, 9.132533672252278719758903061035, 9.233962082308994120919370484186, 9.785166473869818352386352040370, 9.949991477259471093589151146249