Properties

Label 4-1110e2-1.1-c1e2-0-9
Degree $4$
Conductor $1232100$
Sign $1$
Analytic cond. $78.5597$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 3·4-s + 2·5-s + 4·6-s − 7-s − 4·8-s + 3·9-s − 4·10-s + 3·11-s − 6·12-s − 3·13-s + 2·14-s − 4·15-s + 5·16-s + 3·17-s − 6·18-s + 3·19-s + 6·20-s + 2·21-s − 6·22-s + 23-s + 8·24-s + 3·25-s + 6·26-s − 4·27-s − 3·28-s + ⋯
L(s)  = 1  − 1.41·2-s − 1.15·3-s + 3/2·4-s + 0.894·5-s + 1.63·6-s − 0.377·7-s − 1.41·8-s + 9-s − 1.26·10-s + 0.904·11-s − 1.73·12-s − 0.832·13-s + 0.534·14-s − 1.03·15-s + 5/4·16-s + 0.727·17-s − 1.41·18-s + 0.688·19-s + 1.34·20-s + 0.436·21-s − 1.27·22-s + 0.208·23-s + 1.63·24-s + 3/5·25-s + 1.17·26-s − 0.769·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1232100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(78.5597\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1232100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9878845338\)
\(L(\frac12)\) \(\approx\) \(0.9878845338\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$ \( ( 1 + T )^{2} \)
5$C_1$ \( ( 1 - T )^{2} \)
37$C_1$ \( ( 1 + T )^{2} \)
good7$D_{4}$ \( 1 + T + 6 T^{2} + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 - 3 T + 16 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 3 T + 20 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 3 T + 28 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 3 T + 32 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 - T + 38 T^{2} - p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$D_{4}$ \( 1 + 6 T + 38 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 6 T + 58 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 - 2 T + 62 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 5 T + 104 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 18 T + 166 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 6 T + 98 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 6 T + 110 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 14 T + 158 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 9 T + 92 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$D_{4}$ \( 1 - 7 T + 170 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 21 T + 280 T^{2} - 21 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 4 T + 66 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.949991477259471093589151146249, −9.785166473869818352386352040370, −9.233962082308994120919370484186, −9.132533672252278719758903061035, −8.362721335182838771891454882484, −8.166292991905687590382797175022, −7.37109103034187218877082252533, −7.19383089129740938666023607805, −6.64367677864087529475494925552, −6.49574926978295521754769688108, −5.91323595865813664960378916141, −5.58163714663183829670662499015, −4.89680318143745927342182143807, −4.78377900172501744495823396513, −3.57733667604527650710703646354, −3.41648934671731639952703452985, −2.35880976293082522865229911219, −2.06079048662367972003274439679, −1.04556555540668435101019840246, −0.75820356854681945346810287386, 0.75820356854681945346810287386, 1.04556555540668435101019840246, 2.06079048662367972003274439679, 2.35880976293082522865229911219, 3.41648934671731639952703452985, 3.57733667604527650710703646354, 4.78377900172501744495823396513, 4.89680318143745927342182143807, 5.58163714663183829670662499015, 5.91323595865813664960378916141, 6.49574926978295521754769688108, 6.64367677864087529475494925552, 7.19383089129740938666023607805, 7.37109103034187218877082252533, 8.166292991905687590382797175022, 8.362721335182838771891454882484, 9.132533672252278719758903061035, 9.233962082308994120919370484186, 9.785166473869818352386352040370, 9.949991477259471093589151146249

Graph of the $Z$-function along the critical line