L(s) = 1 | − 2-s − 3-s + 5-s + 6-s + 4·7-s + 8-s − 10-s + 6·11-s + 13-s − 4·14-s − 15-s − 16-s − 3·17-s − 2·19-s − 4·21-s − 6·22-s − 24-s − 26-s + 27-s − 6·29-s + 30-s − 8·31-s − 6·33-s + 3·34-s + 4·35-s + 11·37-s + 2·38-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.447·5-s + 0.408·6-s + 1.51·7-s + 0.353·8-s − 0.316·10-s + 1.80·11-s + 0.277·13-s − 1.06·14-s − 0.258·15-s − 1/4·16-s − 0.727·17-s − 0.458·19-s − 0.872·21-s − 1.27·22-s − 0.204·24-s − 0.196·26-s + 0.192·27-s − 1.11·29-s + 0.182·30-s − 1.43·31-s − 1.04·33-s + 0.514·34-s + 0.676·35-s + 1.80·37-s + 0.324·38-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.576311695 |
L(21) |
≈ |
1.576311695 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | C2 | 1+T+T2 |
| 5 | C2 | 1−T+T2 |
| 37 | C2 | 1−11T+pT2 |
good | 7 | C2 | (1−5T+pT2)(1+T+pT2) |
| 11 | C2 | (1−3T+pT2)2 |
| 13 | C22 | 1−T−12T2−pT3+p2T4 |
| 17 | C22 | 1+3T−8T2+3pT3+p2T4 |
| 19 | C22 | 1+2T−15T2+2pT3+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+3T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 41 | C22 | 1−pT2+p2T4 |
| 43 | C2 | (1−8T+pT2)2 |
| 47 | C2 | (1+9T+pT2)2 |
| 53 | C22 | 1−pT2+p2T4 |
| 59 | C22 | 1+3T−50T2+3pT3+p2T4 |
| 61 | C22 | 1−10T+39T2−10pT3+p2T4 |
| 67 | C22 | 1−13T+102T2−13pT3+p2T4 |
| 71 | C22 | 1+6T−35T2+6pT3+p2T4 |
| 73 | C2 | (1+4T+pT2)2 |
| 79 | C22 | 1−16T+177T2−16pT3+p2T4 |
| 83 | C22 | 1+12T+61T2+12pT3+p2T4 |
| 89 | C22 | 1−6T−53T2−6pT3+p2T4 |
| 97 | C2 | (1−2T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.878239054423569226636079936166, −9.633258673698703187860387889141, −9.065505156518732485211837234604, −8.999582932397830252761232864753, −8.508513689942342705592719183176, −8.051834098891151457851135003076, −7.56782466759933503910621492650, −7.29661070892775548685309680603, −6.65102638732774285269019993368, −6.21966732912253373981346406212, −6.00643948418209814195783956982, −5.27649957827327823292054789467, −4.99890206292190340404723554584, −4.26007425008852788319433041974, −4.12805427966953877989478370948, −3.51204786983622105353654680162, −2.46758968551662027939843231709, −1.84743324634711795347959393023, −1.49088098446221964131153324016, −0.69945685765039033126907425969,
0.69945685765039033126907425969, 1.49088098446221964131153324016, 1.84743324634711795347959393023, 2.46758968551662027939843231709, 3.51204786983622105353654680162, 4.12805427966953877989478370948, 4.26007425008852788319433041974, 4.99890206292190340404723554584, 5.27649957827327823292054789467, 6.00643948418209814195783956982, 6.21966732912253373981346406212, 6.65102638732774285269019993368, 7.29661070892775548685309680603, 7.56782466759933503910621492650, 8.051834098891151457851135003076, 8.508513689942342705592719183176, 8.999582932397830252761232864753, 9.065505156518732485211837234604, 9.633258673698703187860387889141, 9.878239054423569226636079936166