L(s) = 1 | − 4-s − 4·5-s − 9-s + 16-s + 4·19-s + 4·20-s + 11·25-s + 16·31-s + 36-s + 12·41-s + 4·45-s + 10·49-s − 12·59-s + 16·61-s − 64-s + 16·71-s − 4·76-s + 32·79-s − 4·80-s + 81-s − 12·89-s − 16·95-s − 11·100-s − 20·101-s + 24·109-s − 22·121-s − 16·124-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 1.78·5-s − 1/3·9-s + 1/4·16-s + 0.917·19-s + 0.894·20-s + 11/5·25-s + 2.87·31-s + 1/6·36-s + 1.87·41-s + 0.596·45-s + 10/7·49-s − 1.56·59-s + 2.04·61-s − 1/8·64-s + 1.89·71-s − 0.458·76-s + 3.60·79-s − 0.447·80-s + 1/9·81-s − 1.27·89-s − 1.64·95-s − 1.09·100-s − 1.99·101-s + 2.29·109-s − 2·121-s − 1.43·124-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.283239077 |
L(21) |
≈ |
1.283239077 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1+4T+pT2 |
| 37 | C2 | 1+T2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+pT2)2 |
| 13 | C22 | 1−22T2+p2T4 |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1−2T+pT2)2 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1+pT2)2 |
| 31 | C2 | (1−8T+pT2)2 |
| 41 | C2 | (1−6T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1+6T2+p2T4 |
| 53 | C22 | 1−102T2+p2T4 |
| 59 | C2 | (1+6T+pT2)2 |
| 61 | C2 | (1−8T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | C22 | 1−82T2+p2T4 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C2 | (1−pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1+2T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.949794568999077430049025979163, −9.687900147503881946912963157314, −9.002733054923657741675495751317, −8.929871208405485281868573329514, −8.168879983998667802800327860234, −8.061045071109727557833480120655, −7.74442124425856362625932106275, −7.29752072306438924333091167403, −6.68001892301503541499825680396, −6.41770390933790760297040453226, −5.79279481821316332130162607663, −5.03142468336652513445714619554, −4.99065158219781470986666377204, −4.24858544144779233391763768170, −3.93008288872750426353207224817, −3.52841878228554168905291947366, −2.77400149945224185587986444726, −2.50563471969673177083762867168, −1.04900108513294705733795950318, −0.64820559882020024916121422129,
0.64820559882020024916121422129, 1.04900108513294705733795950318, 2.50563471969673177083762867168, 2.77400149945224185587986444726, 3.52841878228554168905291947366, 3.93008288872750426353207224817, 4.24858544144779233391763768170, 4.99065158219781470986666377204, 5.03142468336652513445714619554, 5.79279481821316332130162607663, 6.41770390933790760297040453226, 6.68001892301503541499825680396, 7.29752072306438924333091167403, 7.74442124425856362625932106275, 8.061045071109727557833480120655, 8.168879983998667802800327860234, 8.929871208405485281868573329514, 9.002733054923657741675495751317, 9.687900147503881946912963157314, 9.949794568999077430049025979163