L(s) = 1 | − 2-s + 3-s − 5-s − 6-s − 3·7-s + 8-s + 10-s − 4·11-s + 5·13-s + 3·14-s − 15-s − 16-s − 2·17-s − 19-s − 3·21-s + 4·22-s − 4·23-s + 24-s − 5·26-s − 27-s − 10·29-s + 30-s − 8·31-s − 4·33-s + 2·34-s + 3·35-s − 37-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s − 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s + 0.316·10-s − 1.20·11-s + 1.38·13-s + 0.801·14-s − 0.258·15-s − 1/4·16-s − 0.485·17-s − 0.229·19-s − 0.654·21-s + 0.852·22-s − 0.834·23-s + 0.204·24-s − 0.980·26-s − 0.192·27-s − 1.85·29-s + 0.182·30-s − 1.43·31-s − 0.696·33-s + 0.342·34-s + 0.507·35-s − 0.164·37-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T+T2 |
| 3 | C2 | 1−T+T2 |
| 5 | C2 | 1+T+T2 |
| 37 | C2 | 1+T+pT2 |
good | 7 | C22 | 1+3T+2T2+3pT3+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C2 | (1−7T+pT2)(1+2T+pT2) |
| 17 | C22 | 1+2T−13T2+2pT3+p2T4 |
| 19 | C2 | (1−7T+pT2)(1+8T+pT2) |
| 23 | C2 | (1+2T+pT2)2 |
| 29 | C2 | (1+5T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 41 | C22 | 1+10T+59T2+10pT3+p2T4 |
| 43 | C2 | (1+6T+pT2)2 |
| 47 | C2 | (1+12T+pT2)2 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1+10T+41T2+10pT3+p2T4 |
| 61 | C22 | 1−4T−45T2−4pT3+p2T4 |
| 67 | C22 | 1+2T−63T2+2pT3+p2T4 |
| 71 | C22 | 1−T−70T2−pT3+p2T4 |
| 73 | C2 | (1−6T+pT2)2 |
| 79 | C22 | 1+10T+21T2+10pT3+p2T4 |
| 83 | C22 | 1−13T+86T2−13pT3+p2T4 |
| 89 | C22 | 1+16T+167T2+16pT3+p2T4 |
| 97 | C2 | (1−10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.469431670114961762918672593103, −9.320053072555493080117409120304, −8.824643971760549332358762440473, −8.277500539204634583840400575198, −8.117795326298462961192202934998, −7.88481517239625029123951184546, −7.12310953446848890489444829599, −6.89180257601775825436961282401, −6.28913424501088577067100030500, −6.01780284818166202160259939497, −5.22761787903985956667123477545, −5.05068949336486866216640329989, −4.20002343178938403091050157208, −3.58224726861927794961352993671, −3.43510292531433566086146437629, −2.95283374525383741297836899869, −1.80379910684588143234779557876, −1.80206367839233783961982228385, 0, 0,
1.80206367839233783961982228385, 1.80379910684588143234779557876, 2.95283374525383741297836899869, 3.43510292531433566086146437629, 3.58224726861927794961352993671, 4.20002343178938403091050157208, 5.05068949336486866216640329989, 5.22761787903985956667123477545, 6.01780284818166202160259939497, 6.28913424501088577067100030500, 6.89180257601775825436961282401, 7.12310953446848890489444829599, 7.88481517239625029123951184546, 8.117795326298462961192202934998, 8.277500539204634583840400575198, 8.824643971760549332358762440473, 9.320053072555493080117409120304, 9.469431670114961762918672593103