Properties

Label 4-1110e2-1.1-c1e2-0-2
Degree $4$
Conductor $1232100$
Sign $1$
Analytic cond. $78.5597$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s − 9-s + 2·11-s + 16-s − 16·19-s + 2·20-s − 25-s + 10·29-s + 6·31-s + 36-s − 10·41-s − 2·44-s + 2·45-s − 11·49-s − 4·55-s + 8·59-s − 18·61-s − 64-s + 12·71-s + 16·76-s + 16·79-s − 2·80-s + 81-s + 8·89-s + 32·95-s − 2·99-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.894·5-s − 1/3·9-s + 0.603·11-s + 1/4·16-s − 3.67·19-s + 0.447·20-s − 1/5·25-s + 1.85·29-s + 1.07·31-s + 1/6·36-s − 1.56·41-s − 0.301·44-s + 0.298·45-s − 1.57·49-s − 0.539·55-s + 1.04·59-s − 2.30·61-s − 1/8·64-s + 1.42·71-s + 1.83·76-s + 1.80·79-s − 0.223·80-s + 1/9·81-s + 0.847·89-s + 3.28·95-s − 0.201·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1232100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1232100\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(78.5597\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1232100,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5775030128\)
\(L(\frac12)\) \(\approx\) \(0.5775030128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3$C_2$ \( 1 + T^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
37$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 81 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 113 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53979398143835449083076821274, −9.395669002911796927189781335534, −9.357892467028456114938748667481, −8.570350274219051471220173676509, −8.327331849187970760981990550251, −8.246948449039429908119213937451, −7.84041266157207356084912538028, −6.99906153159766326917334432871, −6.52367819123424428092002382614, −6.43622346198207719935651175720, −6.05137938684773561815803510505, −5.09486671455846120428412360008, −4.80164103970649508307300584206, −4.34645260128868524479721101036, −3.96523033989564237250482058195, −3.53273829798565745141436587912, −2.78697484479330659016921360453, −2.23110081171226043300561723713, −1.46048655681344617088755378236, −0.34266992419124572471659020251, 0.34266992419124572471659020251, 1.46048655681344617088755378236, 2.23110081171226043300561723713, 2.78697484479330659016921360453, 3.53273829798565745141436587912, 3.96523033989564237250482058195, 4.34645260128868524479721101036, 4.80164103970649508307300584206, 5.09486671455846120428412360008, 6.05137938684773561815803510505, 6.43622346198207719935651175720, 6.52367819123424428092002382614, 6.99906153159766326917334432871, 7.84041266157207356084912538028, 8.246948449039429908119213937451, 8.327331849187970760981990550251, 8.570350274219051471220173676509, 9.357892467028456114938748667481, 9.395669002911796927189781335534, 10.53979398143835449083076821274

Graph of the $Z$-function along the critical line