L(s) = 1 | − 4-s − 2·5-s − 9-s + 2·11-s + 16-s − 16·19-s + 2·20-s − 25-s + 10·29-s + 6·31-s + 36-s − 10·41-s − 2·44-s + 2·45-s − 11·49-s − 4·55-s + 8·59-s − 18·61-s − 64-s + 12·71-s + 16·76-s + 16·79-s − 2·80-s + 81-s + 8·89-s + 32·95-s − 2·99-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.894·5-s − 1/3·9-s + 0.603·11-s + 1/4·16-s − 3.67·19-s + 0.447·20-s − 1/5·25-s + 1.85·29-s + 1.07·31-s + 1/6·36-s − 1.56·41-s − 0.301·44-s + 0.298·45-s − 1.57·49-s − 0.539·55-s + 1.04·59-s − 2.30·61-s − 1/8·64-s + 1.42·71-s + 1.83·76-s + 1.80·79-s − 0.223·80-s + 1/9·81-s + 0.847·89-s + 3.28·95-s − 0.201·99-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.5775030128 |
L(21) |
≈ |
0.5775030128 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1+2T+pT2 |
| 37 | C2 | 1+T2 |
good | 7 | C22 | 1+11T2+p2T4 |
| 11 | C2 | (1−T+pT2)2 |
| 13 | C2 | (1−pT2)2 |
| 17 | C22 | 1−25T2+p2T4 |
| 19 | C2 | (1+8T+pT2)2 |
| 23 | C22 | 1+18T2+p2T4 |
| 29 | C2 | (1−5T+pT2)2 |
| 31 | C2 | (1−3T+pT2)2 |
| 41 | C2 | (1+5T+pT2)2 |
| 43 | C22 | 1−5T2+p2T4 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C22 | 1−81T2+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1+9T+pT2)2 |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C22 | 1−142T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−4T+pT2)2 |
| 97 | C22 | 1−113T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53979398143835449083076821274, −9.395669002911796927189781335534, −9.357892467028456114938748667481, −8.570350274219051471220173676509, −8.327331849187970760981990550251, −8.246948449039429908119213937451, −7.84041266157207356084912538028, −6.99906153159766326917334432871, −6.52367819123424428092002382614, −6.43622346198207719935651175720, −6.05137938684773561815803510505, −5.09486671455846120428412360008, −4.80164103970649508307300584206, −4.34645260128868524479721101036, −3.96523033989564237250482058195, −3.53273829798565745141436587912, −2.78697484479330659016921360453, −2.23110081171226043300561723713, −1.46048655681344617088755378236, −0.34266992419124572471659020251,
0.34266992419124572471659020251, 1.46048655681344617088755378236, 2.23110081171226043300561723713, 2.78697484479330659016921360453, 3.53273829798565745141436587912, 3.96523033989564237250482058195, 4.34645260128868524479721101036, 4.80164103970649508307300584206, 5.09486671455846120428412360008, 6.05137938684773561815803510505, 6.43622346198207719935651175720, 6.52367819123424428092002382614, 6.99906153159766326917334432871, 7.84041266157207356084912538028, 8.246948449039429908119213937451, 8.327331849187970760981990550251, 8.570350274219051471220173676509, 9.357892467028456114938748667481, 9.395669002911796927189781335534, 10.53979398143835449083076821274