L(s) = 1 | + 2-s − 3-s + 5-s − 6-s + 7-s − 8-s + 10-s + 12·11-s + 13-s + 14-s − 15-s − 16-s − 6·17-s + 7·19-s − 21-s + 12·22-s − 12·23-s + 24-s + 26-s + 27-s + 18·29-s − 30-s − 8·31-s − 12·33-s − 6·34-s + 35-s + 11·37-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 0.316·10-s + 3.61·11-s + 0.277·13-s + 0.267·14-s − 0.258·15-s − 1/4·16-s − 1.45·17-s + 1.60·19-s − 0.218·21-s + 2.55·22-s − 2.50·23-s + 0.204·24-s + 0.196·26-s + 0.192·27-s + 3.34·29-s − 0.182·30-s − 1.43·31-s − 2.08·33-s − 1.02·34-s + 0.169·35-s + 1.80·37-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.778425431 |
L(21) |
≈ |
3.778425431 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | C2 | 1+T+T2 |
| 5 | C2 | 1−T+T2 |
| 37 | C2 | 1−11T+pT2 |
good | 7 | C2 | (1−5T+pT2)(1+4T+pT2) |
| 11 | C2 | (1−6T+pT2)2 |
| 13 | C22 | 1−T−12T2−pT3+p2T4 |
| 17 | C22 | 1+6T+19T2+6pT3+p2T4 |
| 19 | C2 | (1−8T+pT2)(1+T+pT2) |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C2 | (1−9T+pT2)2 |
| 31 | C2 | (1+4T+pT2)2 |
| 41 | C22 | 1+6T−5T2+6pT3+p2T4 |
| 43 | C2 | (1−2T+pT2)2 |
| 47 | C2 | (1−12T+pT2)2 |
| 53 | C22 | 1+6T−17T2+6pT3+p2T4 |
| 59 | C22 | 1−6T−23T2−6pT3+p2T4 |
| 61 | C22 | 1+8T+3T2+8pT3+p2T4 |
| 67 | C22 | 1−10T+33T2−10pT3+p2T4 |
| 71 | C22 | 1−3T−62T2−3pT3+p2T4 |
| 73 | C2 | (1+10T+pT2)2 |
| 79 | C22 | 1+14T+117T2+14pT3+p2T4 |
| 83 | C22 | 1−3T−74T2−3pT3+p2T4 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C2 | (1+10T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.953871990082091940938851236081, −9.541927689555402402623443515630, −9.228378603034700844243454519974, −9.020732830746475835283969620751, −8.322048092597783534463145228437, −8.274585891953708611016338931558, −7.15395611354107512078693749426, −7.09264296644029755282107444231, −6.54609075013246584393561701979, −6.15886860605771446854277883946, −5.80399760247020061614618320794, −5.63168780548413473117476710773, −4.60502796469245766931162250838, −4.28906806490066852181619308797, −4.15348208551456601175354539965, −3.64903469629494670609858691602, −2.82786302841431761784719495373, −2.16321645654747343765217437596, −1.35268290978761980872789518326, −0.939947349923226685331139817729,
0.939947349923226685331139817729, 1.35268290978761980872789518326, 2.16321645654747343765217437596, 2.82786302841431761784719495373, 3.64903469629494670609858691602, 4.15348208551456601175354539965, 4.28906806490066852181619308797, 4.60502796469245766931162250838, 5.63168780548413473117476710773, 5.80399760247020061614618320794, 6.15886860605771446854277883946, 6.54609075013246584393561701979, 7.09264296644029755282107444231, 7.15395611354107512078693749426, 8.274585891953708611016338931558, 8.322048092597783534463145228437, 9.020732830746475835283969620751, 9.228378603034700844243454519974, 9.541927689555402402623443515630, 9.953871990082091940938851236081