L(s) = 1 | + 2-s + 3-s + 5-s + 6-s + 5·7-s − 8-s + 10-s + 4·11-s − 5·13-s + 5·14-s + 15-s − 16-s − 2·17-s + 5·19-s + 5·21-s + 4·22-s − 24-s − 5·26-s − 27-s − 18·29-s + 30-s + 8·31-s + 4·33-s − 2·34-s + 5·35-s + 37-s + 5·38-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.447·5-s + 0.408·6-s + 1.88·7-s − 0.353·8-s + 0.316·10-s + 1.20·11-s − 1.38·13-s + 1.33·14-s + 0.258·15-s − 1/4·16-s − 0.485·17-s + 1.14·19-s + 1.09·21-s + 0.852·22-s − 0.204·24-s − 0.980·26-s − 0.192·27-s − 3.34·29-s + 0.182·30-s + 1.43·31-s + 0.696·33-s − 0.342·34-s + 0.845·35-s + 0.164·37-s + 0.811·38-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.251390660 |
L(21) |
≈ |
5.251390660 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−T+T2 |
| 3 | C2 | 1−T+T2 |
| 5 | C2 | 1−T+T2 |
| 37 | C2 | 1−T+pT2 |
good | 7 | C2 | (1−4T+pT2)(1−T+pT2) |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C2 | (1−2T+pT2)(1+7T+pT2) |
| 17 | C22 | 1+2T−13T2+2pT3+p2T4 |
| 19 | C22 | 1−5T+6T2−5pT3+p2T4 |
| 23 | C2 | (1+pT2)2 |
| 29 | C2 | (1+9T+pT2)2 |
| 31 | C2 | (1−4T+pT2)2 |
| 41 | C22 | 1−8T+23T2−8pT3+p2T4 |
| 43 | C2 | (1−4T+pT2)2 |
| 47 | C2 | (1−2T+pT2)2 |
| 53 | C22 | 1−8T+11T2−8pT3+p2T4 |
| 59 | C22 | 1−4T−43T2−4pT3+p2T4 |
| 61 | C2 | (1+T+pT2)(1+13T+pT2) |
| 67 | C22 | 1−2T−63T2−2pT3+p2T4 |
| 71 | C22 | 1+9T+10T2+9pT3+p2T4 |
| 73 | C2 | (1−16T+pT2)2 |
| 79 | C22 | 1−12T+65T2−12pT3+p2T4 |
| 83 | C22 | 1−9T−2T2−9pT3+p2T4 |
| 89 | C22 | 1−pT2+p2T4 |
| 97 | C2 | (1+4T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.831343566594205917664549654888, −9.387715447092821216452960063542, −9.350636411152087656773196620287, −8.991774535737113864566293787271, −8.368236106500410927382404112243, −7.78069348500159354035072346839, −7.67836108611901298635361204773, −7.32663558808767185092253249957, −6.67289225518721656527527585044, −6.19557285676697858922175379338, −5.50005982686468226758144248732, −5.40896512500361743712494875341, −4.81426163624664657202230537606, −4.44348654643401444257823562430, −3.91568696558912322202087051379, −3.56268178767474618850704171106, −2.64771732596061523796186109014, −2.22617306963070611371022699356, −1.75047599663205583719936389376, −0.921361052193918108075689182150,
0.921361052193918108075689182150, 1.75047599663205583719936389376, 2.22617306963070611371022699356, 2.64771732596061523796186109014, 3.56268178767474618850704171106, 3.91568696558912322202087051379, 4.44348654643401444257823562430, 4.81426163624664657202230537606, 5.40896512500361743712494875341, 5.50005982686468226758144248732, 6.19557285676697858922175379338, 6.67289225518721656527527585044, 7.32663558808767185092253249957, 7.67836108611901298635361204773, 7.78069348500159354035072346839, 8.368236106500410927382404112243, 8.991774535737113864566293787271, 9.350636411152087656773196620287, 9.387715447092821216452960063542, 9.831343566594205917664549654888