L(s) = 1 | − 4-s + 2·5-s − 9-s + 10·11-s + 16-s − 2·20-s − 25-s + 6·29-s + 2·31-s + 36-s − 2·41-s − 10·44-s − 2·45-s + 13·49-s + 20·55-s + 16·59-s + 10·61-s − 64-s − 12·71-s + 2·80-s + 81-s − 16·89-s − 10·99-s + 100-s + 20·101-s − 2·109-s − 6·116-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 0.894·5-s − 1/3·9-s + 3.01·11-s + 1/4·16-s − 0.447·20-s − 1/5·25-s + 1.11·29-s + 0.359·31-s + 1/6·36-s − 0.312·41-s − 1.50·44-s − 0.298·45-s + 13/7·49-s + 2.69·55-s + 2.08·59-s + 1.28·61-s − 1/8·64-s − 1.42·71-s + 0.223·80-s + 1/9·81-s − 1.69·89-s − 1.00·99-s + 1/10·100-s + 1.99·101-s − 0.191·109-s − 0.557·116-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.008521896 |
L(21) |
≈ |
3.008521896 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1−2T+pT2 |
| 37 | C2 | 1+T2 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1−5T+pT2)2 |
| 13 | C2 | (1−pT2)2 |
| 17 | C22 | 1−33T2+p2T4 |
| 19 | C2 | (1+pT2)2 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−3T+pT2)2 |
| 31 | C2 | (1−T+pT2)2 |
| 41 | C2 | (1+T+pT2)2 |
| 43 | C22 | 1−37T2+p2T4 |
| 47 | C22 | 1−78T2+p2T4 |
| 53 | C22 | 1−97T2+p2T4 |
| 59 | C2 | (1−8T+pT2)2 |
| 61 | C2 | (1−5T+pT2)2 |
| 67 | C22 | 1−118T2+p2T4 |
| 71 | C2 | (1+6T+pT2)2 |
| 73 | C22 | 1−46T2+p2T4 |
| 79 | C2 | (1+pT2)2 |
| 83 | C22 | 1−102T2+p2T4 |
| 89 | C2 | (1+8T+pT2)2 |
| 97 | C22 | 1−193T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.898806548509306387902157028838, −9.461932428575362119272997614415, −9.432365744164382493535185519442, −8.742533599501486685955799282245, −8.554724625608482015802809910950, −8.346948234449979839643579756319, −7.34736670098169758450464632897, −7.13639854461668622546552540165, −6.50567474779619146881879836596, −6.40974912693474023525917083813, −5.72328564930003353726158881728, −5.60384256760759524094402033659, −4.75956057505067696990028294807, −4.38541092871708392793850025358, −3.78019112165209341356467054099, −3.63997426744686948500345781353, −2.71631083381843678212150511518, −2.12256468552869514027262606471, −1.35581878153588960545147587834, −0.895888343365722567060548398489,
0.895888343365722567060548398489, 1.35581878153588960545147587834, 2.12256468552869514027262606471, 2.71631083381843678212150511518, 3.63997426744686948500345781353, 3.78019112165209341356467054099, 4.38541092871708392793850025358, 4.75956057505067696990028294807, 5.60384256760759524094402033659, 5.72328564930003353726158881728, 6.40974912693474023525917083813, 6.50567474779619146881879836596, 7.13639854461668622546552540165, 7.34736670098169758450464632897, 8.346948234449979839643579756319, 8.554724625608482015802809910950, 8.742533599501486685955799282245, 9.432365744164382493535185519442, 9.461932428575362119272997614415, 9.898806548509306387902157028838