L(s) = 1 | − 4-s + 4·5-s − 9-s − 4·11-s + 16-s + 8·19-s − 4·20-s + 11·25-s + 16·29-s + 36-s + 20·41-s + 4·44-s − 4·45-s + 10·49-s − 16·55-s − 4·59-s + 12·61-s − 64-s − 24·71-s − 8·76-s + 16·79-s + 4·80-s + 81-s − 28·89-s + 32·95-s + 4·99-s − 11·100-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 1.78·5-s − 1/3·9-s − 1.20·11-s + 1/4·16-s + 1.83·19-s − 0.894·20-s + 11/5·25-s + 2.97·29-s + 1/6·36-s + 3.12·41-s + 0.603·44-s − 0.596·45-s + 10/7·49-s − 2.15·55-s − 0.520·59-s + 1.53·61-s − 1/8·64-s − 2.84·71-s − 0.917·76-s + 1.80·79-s + 0.447·80-s + 1/9·81-s − 2.96·89-s + 3.28·95-s + 0.402·99-s − 1.09·100-s + ⋯ |
Λ(s)=(=(1232100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(1232100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1232100
= 22⋅32⋅52⋅372
|
Sign: |
1
|
Analytic conductor: |
78.5597 |
Root analytic conductor: |
2.97714 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1232100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.951083749 |
L(21) |
≈ |
2.951083749 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | C2 | 1+T2 |
| 5 | C2 | 1−4T+pT2 |
| 37 | C2 | 1+T2 |
good | 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1+2T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C22 | 1+2T2+p2T4 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1−30T2+p2T4 |
| 29 | C2 | (1−8T+pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 41 | C2 | (1−10T+pT2)2 |
| 43 | C22 | 1+58T2+p2T4 |
| 47 | C22 | 1+50T2+p2T4 |
| 53 | C22 | 1−102T2+p2T4 |
| 59 | C2 | (1+2T+pT2)2 |
| 61 | C2 | (1−6T+pT2)2 |
| 67 | C22 | 1−70T2+p2T4 |
| 71 | C2 | (1+12T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1−8T+pT2)2 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1+14T+pT2)2 |
| 97 | C22 | 1−50T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.971073844551332353811681872502, −9.749725404846743207279226353934, −9.160381611053136683879904121489, −9.060180545722797218770930246852, −8.352491084350752996434046496005, −8.211742067526369579884699621877, −7.39301760455058688424372193608, −7.32869297130414834726423199471, −6.58168453481228483765175314013, −6.12167642077108184918041839403, −5.70138181127599563863761848194, −5.47728819040868132351069304226, −4.96806792837512902741940079197, −4.59307052288847856892768091564, −3.96482606899410842392394143289, −3.03102283596293859115236733098, −2.58009415572545439057528152636, −2.56216748649858988553186066434, −1.31811950314360201096810550197, −0.869201337974042471442074666886,
0.869201337974042471442074666886, 1.31811950314360201096810550197, 2.56216748649858988553186066434, 2.58009415572545439057528152636, 3.03102283596293859115236733098, 3.96482606899410842392394143289, 4.59307052288847856892768091564, 4.96806792837512902741940079197, 5.47728819040868132351069304226, 5.70138181127599563863761848194, 6.12167642077108184918041839403, 6.58168453481228483765175314013, 7.32869297130414834726423199471, 7.39301760455058688424372193608, 8.211742067526369579884699621877, 8.352491084350752996434046496005, 9.060180545722797218770930246852, 9.160381611053136683879904121489, 9.749725404846743207279226353934, 9.971073844551332353811681872502