Dirichlet series
L(s) = 1 | + 1.63e4·2-s − 4.70e6·3-s + 2.01e8·4-s − 2.44e9·5-s − 7.70e10·6-s − 5.71e10·7-s + 2.19e12·8-s + 1.11e13·9-s − 4.00e13·10-s + 1.69e14·11-s − 9.46e14·12-s − 1.03e15·13-s − 9.36e14·14-s + 1.14e16·15-s + 2.25e16·16-s − 5.04e16·17-s + 1.83e17·18-s + 4.46e17·19-s − 4.91e17·20-s + 2.68e17·21-s + 2.78e18·22-s − 6.64e18·23-s − 1.03e19·24-s + 4.47e18·25-s − 1.70e19·26-s − 3.70e19·27-s − 1.15e19·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.70·3-s + 3/2·4-s − 0.894·5-s − 2.40·6-s − 0.223·7-s + 1.41·8-s + 1.46·9-s − 1.26·10-s + 1.48·11-s − 2.55·12-s − 0.951·13-s − 0.315·14-s + 1.52·15-s + 5/4·16-s − 1.23·17-s + 2.07·18-s + 2.43·19-s − 1.34·20-s + 0.379·21-s + 2.09·22-s − 2.74·23-s − 2.40·24-s + 3/5·25-s − 1.34·26-s − 1.75·27-s − 0.334·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(2133.10\) |
Root analytic conductor: | \(6.79599\) |
Motivic weight: | \(27\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 100,\ (\ :27/2, 27/2),\ 1)\) |
Particular Values
\(L(14)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{29}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 - p^{13} T )^{2} \) |
5 | $C_1$ | \( ( 1 + p^{13} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 + 1567652 p T + 44989959806 p^{5} T^{2} + 1567652 p^{28} T^{3} + p^{54} T^{4} \) |
7 | $D_{4}$ | \( 1 + 8169291644 p T + 53908827334167324402 p^{4} T^{2} + 8169291644 p^{28} T^{3} + p^{54} T^{4} \) | |
11 | $D_{4}$ | \( 1 - 1403730832224 p^{2} T + \)\(23\!\cdots\!26\)\( p^{2} T^{2} - 1403730832224 p^{29} T^{3} + p^{54} T^{4} \) | |
13 | $D_{4}$ | \( 1 + 79930383943292 p T + \)\(87\!\cdots\!02\)\( p^{2} T^{2} + 79930383943292 p^{28} T^{3} + p^{54} T^{4} \) | |
17 | $D_{4}$ | \( 1 + 50445145609767948 T + \)\(38\!\cdots\!22\)\( T^{2} + 50445145609767948 p^{27} T^{3} + p^{54} T^{4} \) | |
19 | $D_{4}$ | \( 1 - 446863730094123400 T + \)\(57\!\cdots\!62\)\( p T^{2} - 446863730094123400 p^{27} T^{3} + p^{54} T^{4} \) | |
23 | $D_{4}$ | \( 1 + 289013388361901172 p T + \)\(39\!\cdots\!82\)\( p^{2} T^{2} + 289013388361901172 p^{28} T^{3} + p^{54} T^{4} \) | |
29 | $D_{4}$ | \( 1 + 47997399844470169380 T + \)\(25\!\cdots\!18\)\( T^{2} + 47997399844470169380 p^{27} T^{3} + p^{54} T^{4} \) | |
31 | $D_{4}$ | \( 1 - 33574730315678836744 T - \)\(51\!\cdots\!94\)\( T^{2} - 33574730315678836744 p^{27} T^{3} + p^{54} T^{4} \) | |
37 | $D_{4}$ | \( 1 + \)\(13\!\cdots\!08\)\( T + \)\(39\!\cdots\!82\)\( T^{2} + \)\(13\!\cdots\!08\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(11\!\cdots\!56\)\( T - \)\(12\!\cdots\!54\)\( T^{2} + \)\(11\!\cdots\!56\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
43 | $D_{4}$ | \( 1 + \)\(39\!\cdots\!36\)\( T + \)\(13\!\cdots\!38\)\( T^{2} + \)\(39\!\cdots\!36\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
47 | $D_{4}$ | \( 1 + \)\(32\!\cdots\!28\)\( T + \)\(22\!\cdots\!22\)\( T^{2} + \)\(32\!\cdots\!28\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
53 | $D_{4}$ | \( 1 + \)\(33\!\cdots\!96\)\( T + \)\(74\!\cdots\!78\)\( T^{2} + \)\(33\!\cdots\!96\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(34\!\cdots\!60\)\( T + \)\(11\!\cdots\!38\)\( T^{2} + \)\(34\!\cdots\!60\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
61 | $D_{4}$ | \( 1 - \)\(22\!\cdots\!84\)\( T + \)\(21\!\cdots\!06\)\( T^{2} - \)\(22\!\cdots\!84\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
67 | $D_{4}$ | \( 1 + \)\(39\!\cdots\!28\)\( T + \)\(44\!\cdots\!42\)\( T^{2} + \)\(39\!\cdots\!28\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
71 | $D_{4}$ | \( 1 + \)\(24\!\cdots\!76\)\( T + \)\(13\!\cdots\!26\)\( T^{2} + \)\(24\!\cdots\!76\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(12\!\cdots\!96\)\( T + \)\(20\!\cdots\!98\)\( T^{2} + \)\(12\!\cdots\!96\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
79 | $D_{4}$ | \( 1 - \)\(14\!\cdots\!80\)\( T + \)\(34\!\cdots\!18\)\( T^{2} - \)\(14\!\cdots\!80\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(11\!\cdots\!84\)\( T + \)\(15\!\cdots\!18\)\( T^{2} - \)\(11\!\cdots\!84\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
89 | $D_{4}$ | \( 1 - \)\(13\!\cdots\!20\)\( T + \)\(29\!\cdots\!58\)\( T^{2} - \)\(13\!\cdots\!20\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
97 | $D_{4}$ | \( 1 - \)\(11\!\cdots\!92\)\( T + \)\(11\!\cdots\!42\)\( T^{2} - \)\(11\!\cdots\!92\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−14.06477204099351232904679139845, −13.38410926905362476763089848329, −12.27102297236651670439491415361, −12.07537324855380251712478265333, −11.39646639776216202051138602218, −11.37692912392080901369948708456, −10.08278243994427378294633847993, −9.429053755919024524212480593263, −7.81429847586326825084697725455, −7.27043702409289217151549939667, −6.32825728213086568247299599395, −6.12260802869509641084914037188, −5.06964209794475153978336899621, −4.70355361070169436196491332199, −3.78658085621396615232428513966, −3.39663315239867535633678402502, −1.98621832638906211321755447021, −1.32546194362356864904919110011, 0, 0, 1.32546194362356864904919110011, 1.98621832638906211321755447021, 3.39663315239867535633678402502, 3.78658085621396615232428513966, 4.70355361070169436196491332199, 5.06964209794475153978336899621, 6.12260802869509641084914037188, 6.32825728213086568247299599395, 7.27043702409289217151549939667, 7.81429847586326825084697725455, 9.429053755919024524212480593263, 10.08278243994427378294633847993, 11.37692912392080901369948708456, 11.39646639776216202051138602218, 12.07537324855380251712478265333, 12.27102297236651670439491415361, 13.38410926905362476763089848329, 14.06477204099351232904679139845