Dirichlet series
L(s) = 1 | − 1.63e4·2-s − 3.34e6·3-s + 2.01e8·4-s + 2.44e9·5-s + 5.47e10·6-s − 5.87e10·7-s − 2.19e12·8-s − 3.43e12·9-s − 4.00e13·10-s − 1.48e14·11-s − 6.72e14·12-s + 7.00e14·13-s + 9.61e14·14-s − 8.15e15·15-s + 2.25e16·16-s + 3.83e16·17-s + 5.62e16·18-s + 2.31e17·19-s + 4.91e17·20-s + 1.96e17·21-s + 2.43e18·22-s − 1.05e18·23-s + 7.34e18·24-s + 4.47e18·25-s − 1.14e19·26-s + 3.47e19·27-s − 1.18e19·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.20·3-s + 3/2·4-s + 0.894·5-s + 1.71·6-s − 0.229·7-s − 1.41·8-s − 0.450·9-s − 1.26·10-s − 1.29·11-s − 1.81·12-s + 0.641·13-s + 0.323·14-s − 1.08·15-s + 5/4·16-s + 0.939·17-s + 0.636·18-s + 1.26·19-s + 1.34·20-s + 0.277·21-s + 1.83·22-s − 0.435·23-s + 1.71·24-s + 3/5·25-s − 0.906·26-s + 1.64·27-s − 0.343·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(2133.10\) |
Root analytic conductor: | \(6.79599\) |
Motivic weight: | \(27\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 100,\ (\ :27/2, 27/2),\ 1)\) |
Particular Values
\(L(14)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{29}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 + p^{13} T )^{2} \) |
5 | $C_1$ | \( ( 1 - p^{13} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 + 1113548 p T + 60050290706 p^{5} T^{2} + 1113548 p^{28} T^{3} + p^{54} T^{4} \) |
7 | $D_{4}$ | \( 1 + 8386691756 p T + \)\(20\!\cdots\!98\)\( p^{2} T^{2} + 8386691756 p^{28} T^{3} + p^{54} T^{4} \) | |
11 | $D_{4}$ | \( 1 + 1227968656176 p^{2} T + \)\(11\!\cdots\!66\)\( p^{3} T^{2} + 1227968656176 p^{29} T^{3} + p^{54} T^{4} \) | |
13 | $D_{4}$ | \( 1 - 53853778386892 p T + \)\(45\!\cdots\!02\)\( p^{2} T^{2} - 53853778386892 p^{28} T^{3} + p^{54} T^{4} \) | |
17 | $D_{4}$ | \( 1 - 38363966708465748 T + \)\(17\!\cdots\!66\)\( p T^{2} - 38363966708465748 p^{27} T^{3} + p^{54} T^{4} \) | |
19 | $D_{4}$ | \( 1 - 12161973113018200 p T + \)\(14\!\cdots\!98\)\( p^{2} T^{2} - 12161973113018200 p^{28} T^{3} + p^{54} T^{4} \) | |
23 | $D_{4}$ | \( 1 + 1051524217202377644 T + \)\(14\!\cdots\!86\)\( p T^{2} + 1051524217202377644 p^{27} T^{3} + p^{54} T^{4} \) | |
29 | $D_{4}$ | \( 1 - 59213295656400885420 T + \)\(63\!\cdots\!18\)\( T^{2} - 59213295656400885420 p^{27} T^{3} + p^{54} T^{4} \) | |
31 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!44\)\( T + \)\(27\!\cdots\!06\)\( T^{2} - \)\(10\!\cdots\!44\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
37 | $D_{4}$ | \( 1 + 93534665260879182692 T - \)\(45\!\cdots\!18\)\( T^{2} + 93534665260879182692 p^{27} T^{3} + p^{54} T^{4} \) | |
41 | $D_{4}$ | \( 1 + \)\(10\!\cdots\!56\)\( T + \)\(95\!\cdots\!46\)\( T^{2} + \)\(10\!\cdots\!56\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
43 | $D_{4}$ | \( 1 + \)\(47\!\cdots\!64\)\( T + \)\(25\!\cdots\!38\)\( T^{2} + \)\(47\!\cdots\!64\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
47 | $D_{4}$ | \( 1 + \)\(12\!\cdots\!72\)\( T + \)\(27\!\cdots\!22\)\( T^{2} + \)\(12\!\cdots\!72\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
53 | $D_{4}$ | \( 1 + \)\(10\!\cdots\!04\)\( T + \)\(45\!\cdots\!78\)\( T^{2} + \)\(10\!\cdots\!04\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(18\!\cdots\!60\)\( T + \)\(21\!\cdots\!38\)\( T^{2} + \)\(18\!\cdots\!60\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
61 | $D_{4}$ | \( 1 + \)\(37\!\cdots\!16\)\( T + \)\(66\!\cdots\!06\)\( T^{2} + \)\(37\!\cdots\!16\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
67 | $D_{4}$ | \( 1 - \)\(37\!\cdots\!28\)\( T + \)\(40\!\cdots\!42\)\( T^{2} - \)\(37\!\cdots\!28\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
71 | $D_{4}$ | \( 1 + \)\(48\!\cdots\!76\)\( T + \)\(19\!\cdots\!26\)\( T^{2} + \)\(48\!\cdots\!76\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
73 | $D_{4}$ | \( 1 - \)\(94\!\cdots\!96\)\( T + \)\(32\!\cdots\!98\)\( T^{2} - \)\(94\!\cdots\!96\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
79 | $D_{4}$ | \( 1 - \)\(91\!\cdots\!80\)\( T + \)\(42\!\cdots\!42\)\( p T^{2} - \)\(91\!\cdots\!80\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(14\!\cdots\!16\)\( T + \)\(11\!\cdots\!18\)\( T^{2} - \)\(14\!\cdots\!16\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
89 | $D_{4}$ | \( 1 + \)\(16\!\cdots\!80\)\( T + \)\(92\!\cdots\!58\)\( T^{2} + \)\(16\!\cdots\!80\)\( p^{27} T^{3} + p^{54} T^{4} \) | |
97 | $D_{4}$ | \( 1 + \)\(88\!\cdots\!36\)\( p T + \)\(10\!\cdots\!42\)\( T^{2} + \)\(88\!\cdots\!36\)\( p^{28} T^{3} + p^{54} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−13.97756821922551499166121253593, −13.49467399399764701293582925178, −12.08816433248692243662481854452, −12.07522271487377906900866341107, −10.82351813602922164737248597228, −10.72478428543871405819678904805, −9.840799220441137020884259230077, −9.349324796154985816624834683360, −8.190493865173437379062652528635, −7.926125608269574303601018424469, −6.61010164811198320189881389167, −6.23138509488249428180098377454, −5.44049308993059938142364929025, −5.03604025707529726661101869382, −3.05300331982851093961720436755, −2.88574255606246008863666505496, −1.56573529971417964589857727623, −1.13126610315316071062535865744, 0, 0, 1.13126610315316071062535865744, 1.56573529971417964589857727623, 2.88574255606246008863666505496, 3.05300331982851093961720436755, 5.03604025707529726661101869382, 5.44049308993059938142364929025, 6.23138509488249428180098377454, 6.61010164811198320189881389167, 7.926125608269574303601018424469, 8.190493865173437379062652528635, 9.349324796154985816624834683360, 9.840799220441137020884259230077, 10.72478428543871405819678904805, 10.82351813602922164737248597228, 12.07522271487377906900866341107, 12.08816433248692243662481854452, 13.49467399399764701293582925178, 13.97756821922551499166121253593