Dirichlet series
L(s) = 1 | − 4.09e3·2-s − 1.85e4·3-s + 1.25e7·4-s + 9.76e7·5-s + 7.58e7·6-s − 4.41e9·7-s − 3.43e10·8-s − 1.31e11·9-s − 4.00e11·10-s + 1.95e11·11-s − 2.32e11·12-s + 2.58e12·13-s + 1.80e13·14-s − 1.80e12·15-s + 8.79e13·16-s + 1.31e14·17-s + 5.36e14·18-s − 1.76e12·19-s + 1.22e15·20-s + 8.17e13·21-s − 7.98e14·22-s + 4.01e15·23-s + 6.36e14·24-s + 7.15e15·25-s − 1.05e16·26-s + 3.11e15·27-s − 5.55e16·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.0603·3-s + 3/2·4-s + 0.894·5-s + 0.0853·6-s − 0.844·7-s − 1.41·8-s − 1.39·9-s − 1.26·10-s + 0.206·11-s − 0.0905·12-s + 0.399·13-s + 1.19·14-s − 0.0539·15-s + 5/4·16-s + 0.931·17-s + 1.96·18-s − 0.00346·19-s + 1.34·20-s + 0.0509·21-s − 0.291·22-s + 0.878·23-s + 0.0853·24-s + 3/5·25-s − 0.565·26-s + 0.107·27-s − 1.26·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(1123.61\) |
Root analytic conductor: | \(5.78968\) |
Motivic weight: | \(23\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(2\) |
Selberg data: | \((4,\ 100,\ (\ :23/2, 23/2),\ 1)\) |
Particular Values
\(L(12)\) | \(=\) | \(0\) |
\(L(\frac12)\) | \(=\) | \(0\) |
\(L(\frac{25}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 + p^{11} T )^{2} \) |
5 | $C_1$ | \( ( 1 - p^{11} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 + 6172 p T + 540524626 p^{5} T^{2} + 6172 p^{24} T^{3} + p^{46} T^{4} \) |
7 | $D_{4}$ | \( 1 + 4415735108 T + 990635565626217198 p^{2} T^{2} + 4415735108 p^{23} T^{3} + p^{46} T^{4} \) | |
11 | $D_{4}$ | \( 1 - 17728839984 p T + \)\(57\!\cdots\!86\)\( p^{2} T^{2} - 17728839984 p^{24} T^{3} + p^{46} T^{4} \) | |
13 | $D_{4}$ | \( 1 - 2583183058684 T + \)\(54\!\cdots\!66\)\( p T^{2} - 2583183058684 p^{23} T^{3} + p^{46} T^{4} \) | |
17 | $D_{4}$ | \( 1 - 7745227211796 p T + \)\(13\!\cdots\!38\)\( p^{2} T^{2} - 7745227211796 p^{24} T^{3} + p^{46} T^{4} \) | |
19 | $D_{4}$ | \( 1 + 92678337800 p T - \)\(47\!\cdots\!62\)\( p^{2} T^{2} + 92678337800 p^{24} T^{3} + p^{46} T^{4} \) | |
23 | $D_{4}$ | \( 1 - 4012836105342564 T + \)\(41\!\cdots\!58\)\( T^{2} - 4012836105342564 p^{23} T^{3} + p^{46} T^{4} \) | |
29 | $D_{4}$ | \( 1 + 108385465473787380 T + \)\(11\!\cdots\!78\)\( T^{2} + 108385465473787380 p^{23} T^{3} + p^{46} T^{4} \) | |
31 | $D_{4}$ | \( 1 + 282534241930647896 T + \)\(58\!\cdots\!86\)\( T^{2} + 282534241930647896 p^{23} T^{3} + p^{46} T^{4} \) | |
37 | $D_{4}$ | \( 1 + 326855967548366468 T + \)\(23\!\cdots\!62\)\( T^{2} + 326855967548366468 p^{23} T^{3} + p^{46} T^{4} \) | |
41 | $D_{4}$ | \( 1 + 5378411403014673276 T + \)\(31\!\cdots\!86\)\( T^{2} + 5378411403014673276 p^{23} T^{3} + p^{46} T^{4} \) | |
43 | $D_{4}$ | \( 1 + 9824206470496391636 T + \)\(93\!\cdots\!38\)\( T^{2} + 9824206470496391636 p^{23} T^{3} + p^{46} T^{4} \) | |
47 | $D_{4}$ | \( 1 + 18459008132084260308 T + \)\(56\!\cdots\!62\)\( T^{2} + 18459008132084260308 p^{23} T^{3} + p^{46} T^{4} \) | |
53 | $D_{4}$ | \( 1 + 6735586459267392756 T + \)\(74\!\cdots\!38\)\( T^{2} + 6735586459267392756 p^{23} T^{3} + p^{46} T^{4} \) | |
59 | $D_{4}$ | \( 1 - \)\(40\!\cdots\!40\)\( T + \)\(14\!\cdots\!58\)\( T^{2} - \)\(40\!\cdots\!40\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
61 | $D_{4}$ | \( 1 - \)\(26\!\cdots\!04\)\( T + \)\(10\!\cdots\!66\)\( T^{2} - \)\(26\!\cdots\!04\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
67 | $D_{4}$ | \( 1 + \)\(87\!\cdots\!48\)\( T + \)\(20\!\cdots\!02\)\( T^{2} + \)\(87\!\cdots\!48\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
71 | $D_{4}$ | \( 1 + \)\(14\!\cdots\!36\)\( T + \)\(80\!\cdots\!46\)\( T^{2} + \)\(14\!\cdots\!36\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(27\!\cdots\!76\)\( T + \)\(64\!\cdots\!78\)\( T^{2} + \)\(27\!\cdots\!76\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
79 | $D_{4}$ | \( 1 + \)\(16\!\cdots\!20\)\( T + \)\(19\!\cdots\!82\)\( p T^{2} + \)\(16\!\cdots\!20\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
83 | $D_{4}$ | \( 1 + \)\(24\!\cdots\!56\)\( T + \)\(38\!\cdots\!58\)\( T^{2} + \)\(24\!\cdots\!56\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
89 | $D_{4}$ | \( 1 + \)\(69\!\cdots\!80\)\( T + \)\(24\!\cdots\!38\)\( T^{2} + \)\(69\!\cdots\!80\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
97 | $D_{4}$ | \( 1 - \)\(14\!\cdots\!12\)\( T + \)\(12\!\cdots\!82\)\( T^{2} - \)\(14\!\cdots\!12\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−14.69390718322505392582060265338, −14.58169983205091940843880867931, −13.25939727512564272838476998147, −12.79049491196663800966999533364, −11.42728542323827566773725694286, −11.35150879129843082742683915823, −10.08346713543973632897355434531, −9.828036761207862126136814570754, −8.795024627342551685736053765080, −8.624538790419002043482374226643, −7.35627020794432526751101012849, −6.69201322082391387620331792881, −5.77645227090916990841145681726, −5.40606186739822459580152865245, −3.38027992499909036996118919657, −3.06197370869439677911210663828, −1.87873178612466061232391881201, −1.36549710130965868341011250098, 0, 0, 1.36549710130965868341011250098, 1.87873178612466061232391881201, 3.06197370869439677911210663828, 3.38027992499909036996118919657, 5.40606186739822459580152865245, 5.77645227090916990841145681726, 6.69201322082391387620331792881, 7.35627020794432526751101012849, 8.624538790419002043482374226643, 8.795024627342551685736053765080, 9.828036761207862126136814570754, 10.08346713543973632897355434531, 11.35150879129843082742683915823, 11.42728542323827566773725694286, 12.79049491196663800966999533364, 13.25939727512564272838476998147, 14.58169983205091940843880867931, 14.69390718322505392582060265338