Dirichlet series
L(s) = 1 | − 4.09e3·2-s + 6.86e5·3-s + 1.25e7·4-s − 9.76e7·5-s − 2.81e9·6-s − 3.52e9·7-s − 3.43e10·8-s + 2.25e11·9-s + 4.00e11·10-s + 9.36e11·11-s + 8.63e12·12-s + 9.96e12·13-s + 1.44e13·14-s − 6.70e13·15-s + 8.79e13·16-s − 1.60e12·17-s − 9.25e14·18-s − 2.56e14·19-s − 1.22e15·20-s − 2.42e15·21-s − 3.83e15·22-s + 3.59e15·23-s − 2.35e16·24-s + 7.15e15·25-s − 4.08e16·26-s + 5.13e16·27-s − 4.44e16·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 2.23·3-s + 3/2·4-s − 0.894·5-s − 3.16·6-s − 0.674·7-s − 1.41·8-s + 2.40·9-s + 1.26·10-s + 0.989·11-s + 3.35·12-s + 1.54·13-s + 0.954·14-s − 2.00·15-s + 5/4·16-s − 0.0113·17-s − 3.39·18-s − 0.505·19-s − 1.34·20-s − 1.50·21-s − 1.39·22-s + 0.786·23-s − 3.16·24-s + 3/5·25-s − 2.18·26-s + 1.77·27-s − 1.01·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(1123.61\) |
Root analytic conductor: | \(5.78968\) |
Motivic weight: | \(23\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 100,\ (\ :23/2, 23/2),\ 1)\) |
Particular Values
\(L(12)\) | \(\approx\) | \(4.041866136\) |
\(L(\frac12)\) | \(\approx\) | \(4.041866136\) |
\(L(\frac{25}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 + p^{11} T )^{2} \) |
5 | $C_1$ | \( ( 1 + p^{11} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 - 76276 p^{2} T + 112148014 p^{7} T^{2} - 76276 p^{25} T^{3} + p^{46} T^{4} \) |
7 | $D_{4}$ | \( 1 + 3529595108 T + 210532244602639698 p^{2} T^{2} + 3529595108 p^{23} T^{3} + p^{46} T^{4} \) | |
11 | $D_{4}$ | \( 1 - 85141569984 p T + \)\(11\!\cdots\!86\)\( p^{2} T^{2} - 85141569984 p^{24} T^{3} + p^{46} T^{4} \) | |
13 | $D_{4}$ | \( 1 - 9961846393684 T + \)\(89\!\cdots\!58\)\( T^{2} - 9961846393684 p^{23} T^{3} + p^{46} T^{4} \) | |
17 | $D_{4}$ | \( 1 + 94688808204 p T + \)\(81\!\cdots\!38\)\( p^{2} T^{2} + 94688808204 p^{24} T^{3} + p^{46} T^{4} \) | |
19 | $D_{4}$ | \( 1 + 256914240498200 T + \)\(19\!\cdots\!22\)\( p T^{2} + 256914240498200 p^{23} T^{3} + p^{46} T^{4} \) | |
23 | $D_{4}$ | \( 1 - 3594102326172564 T + \)\(40\!\cdots\!58\)\( T^{2} - 3594102326172564 p^{23} T^{3} + p^{46} T^{4} \) | |
29 | $D_{4}$ | \( 1 - 195470005256002620 T + \)\(17\!\cdots\!78\)\( T^{2} - 195470005256002620 p^{23} T^{3} + p^{46} T^{4} \) | |
31 | $D_{4}$ | \( 1 - 168811393572212104 T + \)\(47\!\cdots\!86\)\( T^{2} - 168811393572212104 p^{23} T^{3} + p^{46} T^{4} \) | |
37 | $D_{4}$ | \( 1 - 914879862377868532 T + \)\(91\!\cdots\!62\)\( T^{2} - 914879862377868532 p^{23} T^{3} + p^{46} T^{4} \) | |
41 | $D_{4}$ | \( 1 - 1944225537689591724 T + \)\(19\!\cdots\!86\)\( T^{2} - 1944225537689591724 p^{23} T^{3} + p^{46} T^{4} \) | |
43 | $D_{4}$ | \( 1 - 2162030450882223364 T + \)\(65\!\cdots\!38\)\( T^{2} - 2162030450882223364 p^{23} T^{3} + p^{46} T^{4} \) | |
47 | $D_{4}$ | \( 1 - 20899427956391479692 T + \)\(33\!\cdots\!62\)\( T^{2} - 20899427956391479692 p^{23} T^{3} + p^{46} T^{4} \) | |
53 | $D_{4}$ | \( 1 - 72675644730523142244 T + \)\(73\!\cdots\!38\)\( T^{2} - 72675644730523142244 p^{23} T^{3} + p^{46} T^{4} \) | |
59 | $D_{4}$ | \( 1 + \)\(26\!\cdots\!60\)\( T + \)\(12\!\cdots\!58\)\( T^{2} + \)\(26\!\cdots\!60\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
61 | $D_{4}$ | \( 1 + \)\(34\!\cdots\!96\)\( T + \)\(25\!\cdots\!66\)\( T^{2} + \)\(34\!\cdots\!96\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
67 | $D_{4}$ | \( 1 - \)\(17\!\cdots\!52\)\( T + \)\(21\!\cdots\!02\)\( T^{2} - \)\(17\!\cdots\!52\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
71 | $D_{4}$ | \( 1 - \)\(57\!\cdots\!64\)\( T + \)\(15\!\cdots\!46\)\( T^{2} - \)\(57\!\cdots\!64\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
73 | $D_{4}$ | \( 1 + \)\(10\!\cdots\!76\)\( T + \)\(12\!\cdots\!78\)\( T^{2} + \)\(10\!\cdots\!76\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
79 | $D_{4}$ | \( 1 + \)\(51\!\cdots\!20\)\( T + \)\(56\!\cdots\!78\)\( T^{2} + \)\(51\!\cdots\!20\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
83 | $D_{4}$ | \( 1 - \)\(87\!\cdots\!44\)\( T + \)\(28\!\cdots\!58\)\( T^{2} - \)\(87\!\cdots\!44\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
89 | $D_{4}$ | \( 1 - \)\(24\!\cdots\!20\)\( T + \)\(14\!\cdots\!38\)\( T^{2} - \)\(24\!\cdots\!20\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
97 | $D_{4}$ | \( 1 - \)\(28\!\cdots\!12\)\( T + \)\(66\!\cdots\!82\)\( T^{2} - \)\(28\!\cdots\!12\)\( p^{23} T^{3} + p^{46} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−15.50997745658585319492659493277, −15.19117359675760961223231492886, −14.13413588294952209331189303042, −13.83123498308352105226391530833, −12.69464495104874652409336596793, −11.93366291452725969285456019802, −10.94404979533563908472560842663, −10.21339686114719998896677824859, −9.152373569808496861084334929293, −8.993758261191315894266003781862, −8.115597605634270287552641704517, −8.101830958496358041931908930425, −6.77114373542903646842451922125, −6.41371313771799990709877614830, −4.27934146385728398294270129474, −3.56112422779799500224801165446, −2.88858060961328901916219702569, −2.40954745454556075414213239421, −1.05751238210411616523404130839, −0.863674310779455764603152532422, 0.863674310779455764603152532422, 1.05751238210411616523404130839, 2.40954745454556075414213239421, 2.88858060961328901916219702569, 3.56112422779799500224801165446, 4.27934146385728398294270129474, 6.41371313771799990709877614830, 6.77114373542903646842451922125, 8.101830958496358041931908930425, 8.115597605634270287552641704517, 8.993758261191315894266003781862, 9.152373569808496861084334929293, 10.21339686114719998896677824859, 10.94404979533563908472560842663, 11.93366291452725969285456019802, 12.69464495104874652409336596793, 13.83123498308352105226391530833, 14.13413588294952209331189303042, 15.19117359675760961223231492886, 15.50997745658585319492659493277