L(s) = 1 | − 2.04e3·2-s − 1.26e5·3-s + 3.14e6·4-s − 1.95e7·5-s + 2.59e8·6-s − 2.92e8·7-s − 4.29e9·8-s + 3.49e9·9-s + 4.00e10·10-s − 4.13e10·11-s − 3.98e11·12-s + 1.88e12·13-s + 5.99e11·14-s + 2.47e12·15-s + 5.49e12·16-s − 3.10e12·17-s − 7.16e12·18-s + 7.17e12·19-s − 6.14e13·20-s + 3.70e13·21-s + 8.46e13·22-s − 3.57e14·23-s + 5.44e14·24-s + 2.86e14·25-s − 3.86e15·26-s − 1.78e14·27-s − 9.20e14·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.23·3-s + 3/2·4-s − 0.894·5-s + 1.75·6-s − 0.391·7-s − 1.41·8-s + 0.334·9-s + 1.26·10-s − 0.480·11-s − 1.85·12-s + 3.79·13-s + 0.553·14-s + 1.10·15-s + 5/4·16-s − 0.372·17-s − 0.472·18-s + 0.268·19-s − 1.34·20-s + 0.484·21-s + 0.679·22-s − 1.79·23-s + 1.75·24-s + 3/5·25-s − 5.36·26-s − 0.166·27-s − 0.587·28-s + ⋯ |
Λ(s)=(=(100s/2ΓC(s)2L(s)Λ(22−s)
Λ(s)=(=(100s/2ΓC(s+21/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
100
= 22⋅52
|
Sign: |
1
|
Analytic conductor: |
781.075 |
Root analytic conductor: |
5.28656 |
Motivic weight: |
21 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 100, ( :21/2,21/2), 1)
|
Particular Values
L(11) |
= |
0 |
L(21) |
= |
0 |
L(223) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+p10T)2 |
| 5 | C1 | (1+p10T)2 |
good | 3 | D4 | 1+126692T+464904286p3T2+126692p21T3+p42T4 |
| 7 | D4 | 1+41799812pT+9706833687364722p2T2+41799812p22T3+p42T4 |
| 11 | D4 | 1+41326831776T+36⋯06pT2+41326831776p21T3+p42T4 |
| 13 | D4 | 1−145157805556pT+81⋯38p2T2−145157805556p22T3+p42T4 |
| 17 | D4 | 1+3100413932364T+22⋯74pT2+3100413932364p21T3+p42T4 |
| 19 | D4 | 1−377673402760pT+36⋯58p2T2−377673402760p22T3+p42T4 |
| 23 | D4 | 1+357559990100052T+87⋯22T2+357559990100052p21T3+p42T4 |
| 29 | D4 | 1+2454584202185940T+46⋯58T2+2454584202185940p21T3+p42T4 |
| 31 | D4 | 1+4310677151243336T+16⋯86T2+4310677151243336p21T3+p42T4 |
| 37 | D4 | 1+32389201650205724T+12⋯18T2+32389201650205724p21T3+p42T4 |
| 41 | D4 | 1+16298035212712116T+71⋯46T2+16298035212712116p21T3+p42T4 |
| 43 | D4 | 1+161845702253479412T+46⋯22T2+161845702253479412p21T3+p42T4 |
| 47 | D4 | 1−153492993930726996T+18⋯98T2−153492993930726996p21T3+p42T4 |
| 53 | D4 | 1−604198357317820308T+20⋯22T2−604198357317820308p21T3+p42T4 |
| 59 | D4 | 1−3110197357974672120T+32⋯18T2−3110197357974672120p21T3+p42T4 |
| 61 | D4 | 1+791142209760451676T+37⋯66T2+791142209760451676p21T3+p42T4 |
| 67 | D4 | 1+5111819523383561564T+33⋯58T2+5111819523383561564p21T3+p42T4 |
| 71 | D4 | 1+82388741313238482456T+30⋯26T2+82388741313238482456p21T3+p42T4 |
| 73 | D4 | 1−10657918464992348548T+27⋯22T2−10657918464992348548p21T3+p42T4 |
| 79 | D4 | 1−28314166125451369360T+14⋯58T2−28314166125451369360p21T3+p42T4 |
| 83 | D4 | 1+125635249468995804pT+38⋯22T2+125635249468995804p22T3+p42T4 |
| 89 | D4 | 1−47⋯80T+23⋯78T2−47⋯80p21T3+p42T4 |
| 97 | D4 | 1−54⋯96T+92⋯98T2−54⋯96p21T3+p42T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.85839538305185702401666177148, −15.12359892667593229874454707570, −13.64200455617642625052055268830, −12.99776444958657970857434160675, −11.66285262007658734522626524496, −11.61865778298513851339169783129, −10.73804741737209801406969588700, −10.48634307925554845713591773938, −9.118563010103317364979725732703, −8.492003153746732251829754573077, −7.88643975889491217582953307268, −6.79751258135651795703609932208, −6.04213711772108342139157952173, −5.64939506760527435706315109686, −3.86191063965913166125107408071, −3.42967016289538218632564970545, −1.76894170409024154823913311715, −1.11642112105821876100684601202, 0, 0,
1.11642112105821876100684601202, 1.76894170409024154823913311715, 3.42967016289538218632564970545, 3.86191063965913166125107408071, 5.64939506760527435706315109686, 6.04213711772108342139157952173, 6.79751258135651795703609932208, 7.88643975889491217582953307268, 8.492003153746732251829754573077, 9.118563010103317364979725732703, 10.48634307925554845713591773938, 10.73804741737209801406969588700, 11.61865778298513851339169783129, 11.66285262007658734522626524496, 12.99776444958657970857434160675, 13.64200455617642625052055268830, 15.12359892667593229874454707570, 15.85839538305185702401666177148