Dirichlet series
L(s) = 1 | + 2.04e3·2-s + 3.09e4·3-s + 3.14e6·4-s − 1.95e7·5-s + 6.34e7·6-s − 4.39e8·7-s + 4.29e9·8-s − 3.21e9·9-s − 4.00e10·10-s + 1.05e11·11-s + 9.74e10·12-s + 3.08e11·13-s − 9.01e11·14-s − 6.04e11·15-s + 5.49e12·16-s + 1.83e13·17-s − 6.58e12·18-s + 2.38e13·19-s − 6.14e13·20-s − 1.36e13·21-s + 2.15e14·22-s − 8.25e13·23-s + 1.33e14·24-s + 2.86e14·25-s + 6.31e14·26-s + 9.51e13·27-s − 1.38e15·28-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 0.302·3-s + 3/2·4-s − 0.894·5-s + 0.428·6-s − 0.588·7-s + 1.41·8-s − 0.307·9-s − 1.26·10-s + 1.22·11-s + 0.454·12-s + 0.620·13-s − 0.832·14-s − 0.270·15-s + 5/4·16-s + 2.21·17-s − 0.434·18-s + 0.891·19-s − 1.34·20-s − 0.178·21-s + 1.72·22-s − 0.415·23-s + 0.428·24-s + 3/5·25-s + 0.877·26-s + 0.0889·27-s − 0.883·28-s + ⋯ |
Functional equation
Invariants
Degree: | \(4\) |
Conductor: | \(100\) = \(2^{2} \cdot 5^{2}\) |
Sign: | $1$ |
Analytic conductor: | \(781.075\) |
Root analytic conductor: | \(5.28656\) |
Motivic weight: | \(21\) |
Rational: | yes |
Arithmetic: | yes |
Character: | Trivial |
Primitive: | no |
Self-dual: | yes |
Analytic rank: | \(0\) |
Selberg data: | \((4,\ 100,\ (\ :21/2, 21/2),\ 1)\) |
Particular Values
\(L(11)\) | \(\approx\) | \(8.482990907\) |
\(L(\frac12)\) | \(\approx\) | \(8.482990907\) |
\(L(\frac{23}{2})\) | not available | |
\(L(1)\) | not available |
Euler product
$p$ | $\Gal(F_p)$ | $F_p(T)$ | |
---|---|---|---|
bad | 2 | $C_1$ | \( ( 1 - p^{10} T )^{2} \) |
5 | $C_1$ | \( ( 1 + p^{10} T )^{2} \) | |
good | 3 | $D_{4}$ | \( 1 - 10324 p T + 17175214 p^{5} T^{2} - 10324 p^{22} T^{3} + p^{42} T^{4} \) |
7 | $D_{4}$ | \( 1 + 439959356 T + 166460827342795614 p T^{2} + 439959356 p^{21} T^{3} + p^{42} T^{4} \) | |
11 | $D_{4}$ | \( 1 - 105191777184 T + \)\(74\!\cdots\!26\)\( p T^{2} - 105191777184 p^{21} T^{3} + p^{42} T^{4} \) | |
13 | $D_{4}$ | \( 1 - 308456648932 T + \)\(31\!\cdots\!14\)\( p T^{2} - 308456648932 p^{21} T^{3} + p^{42} T^{4} \) | |
17 | $D_{4}$ | \( 1 - 1081999770612 p T + \)\(72\!\cdots\!42\)\( p^{2} T^{2} - 1081999770612 p^{22} T^{3} + p^{42} T^{4} \) | |
19 | $D_{4}$ | \( 1 - 1253748248200 p T + \)\(28\!\cdots\!58\)\( p^{2} T^{2} - 1253748248200 p^{22} T^{3} + p^{42} T^{4} \) | |
23 | $D_{4}$ | \( 1 + 82586042978868 T + \)\(77\!\cdots\!02\)\( T^{2} + 82586042978868 p^{21} T^{3} + p^{42} T^{4} \) | |
29 | $D_{4}$ | \( 1 + 167038888446420 T + \)\(27\!\cdots\!58\)\( T^{2} + 167038888446420 p^{21} T^{3} + p^{42} T^{4} \) | |
31 | $D_{4}$ | \( 1 - 5373084998145784 T + \)\(46\!\cdots\!26\)\( T^{2} - 5373084998145784 p^{21} T^{3} + p^{42} T^{4} \) | |
37 | $D_{4}$ | \( 1 - 83725084127912164 T + \)\(32\!\cdots\!98\)\( T^{2} - 83725084127912164 p^{21} T^{3} + p^{42} T^{4} \) | |
41 | $D_{4}$ | \( 1 + 63222375005514036 T + \)\(15\!\cdots\!06\)\( T^{2} + 63222375005514036 p^{21} T^{3} + p^{42} T^{4} \) | |
43 | $D_{4}$ | \( 1 + 113835841911164948 T + \)\(12\!\cdots\!62\)\( T^{2} + 113835841911164948 p^{21} T^{3} + p^{42} T^{4} \) | |
47 | $D_{4}$ | \( 1 - 13253549001226164 T + \)\(24\!\cdots\!18\)\( T^{2} - 13253549001226164 p^{21} T^{3} + p^{42} T^{4} \) | |
53 | $D_{4}$ | \( 1 + 1445751023743904748 T + \)\(67\!\cdots\!82\)\( T^{2} + 1445751023743904748 p^{21} T^{3} + p^{42} T^{4} \) | |
59 | $D_{4}$ | \( 1 + 817060118931432840 T + \)\(30\!\cdots\!18\)\( T^{2} + 817060118931432840 p^{21} T^{3} + p^{42} T^{4} \) | |
61 | $D_{4}$ | \( 1 + 4580997169825849436 T + \)\(32\!\cdots\!46\)\( T^{2} + 4580997169825849436 p^{21} T^{3} + p^{42} T^{4} \) | |
67 | $D_{4}$ | \( 1 + 28808031668773210556 T + \)\(64\!\cdots\!18\)\( T^{2} + 28808031668773210556 p^{21} T^{3} + p^{42} T^{4} \) | |
71 | $D_{4}$ | \( 1 - 51140957732016114984 T + \)\(21\!\cdots\!06\)\( T^{2} - 51140957732016114984 p^{21} T^{3} + p^{42} T^{4} \) | |
73 | $D_{4}$ | \( 1 - 14792322512082321412 T + \)\(38\!\cdots\!82\)\( T^{2} - 14792322512082321412 p^{21} T^{3} + p^{42} T^{4} \) | |
79 | $D_{4}$ | \( 1 - 25077766877525032720 T + \)\(11\!\cdots\!58\)\( T^{2} - 25077766877525032720 p^{21} T^{3} + p^{42} T^{4} \) | |
83 | $D_{4}$ | \( 1 + \)\(12\!\cdots\!68\)\( T + \)\(38\!\cdots\!22\)\( T^{2} + \)\(12\!\cdots\!68\)\( p^{21} T^{3} + p^{42} T^{4} \) | |
89 | $D_{4}$ | \( 1 - \)\(10\!\cdots\!80\)\( T - \)\(33\!\cdots\!22\)\( T^{2} - \)\(10\!\cdots\!80\)\( p^{21} T^{3} + p^{42} T^{4} \) | |
97 | $D_{4}$ | \( 1 + \)\(26\!\cdots\!96\)\( T + \)\(45\!\cdots\!98\)\( T^{2} + \)\(26\!\cdots\!96\)\( p^{21} T^{3} + p^{42} T^{4} \) | |
show more | |||
show less |
Imaginary part of the first few zeros on the critical line
−15.80904391050943419199518934072, −15.13882234462509989118536923004, −14.30191180182851090555111216750, −14.16960218827182429796380241887, −13.11501084736210432123292800820, −12.44505953192757271287888041570, −11.61423277013174624547472955210, −11.53921826035046864923926285742, −10.16505969652227915066826270464, −9.426914530971558626016586784040, −8.100065386988730858243015776923, −7.63250874819259180382847280239, −6.45860842729809545368635697469, −6.01437335541878318939133969791, −4.89552429151551962596653638970, −4.05255449788773471739179722733, −3.20267462228395308125262242873, −3.10198697336722944316667572319, −1.48514684380487484315958066096, −0.794842427459680101765561788939, 0.794842427459680101765561788939, 1.48514684380487484315958066096, 3.10198697336722944316667572319, 3.20267462228395308125262242873, 4.05255449788773471739179722733, 4.89552429151551962596653638970, 6.01437335541878318939133969791, 6.45860842729809545368635697469, 7.63250874819259180382847280239, 8.100065386988730858243015776923, 9.426914530971558626016586784040, 10.16505969652227915066826270464, 11.53921826035046864923926285742, 11.61423277013174624547472955210, 12.44505953192757271287888041570, 13.11501084736210432123292800820, 14.16960218827182429796380241887, 14.30191180182851090555111216750, 15.13882234462509989118536923004, 15.80904391050943419199518934072