L(s) = 1 | − 2.04e3·2-s + 1.00e5·3-s + 3.14e6·4-s + 1.95e7·5-s − 2.05e8·6-s + 1.32e9·7-s − 4.29e9·8-s + 7.55e9·9-s − 4.00e10·10-s + 2.18e10·11-s + 3.15e11·12-s − 4.12e11·13-s − 2.72e12·14-s + 1.95e12·15-s + 5.49e12·16-s − 1.10e13·17-s − 1.54e13·18-s − 5.20e13·19-s + 6.14e13·20-s + 1.33e14·21-s − 4.47e13·22-s + 8.09e13·23-s − 4.30e14·24-s + 2.86e14·25-s + 8.43e14·26-s + 1.55e15·27-s + 4.18e15·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.980·3-s + 3/2·4-s + 0.894·5-s − 1.38·6-s + 1.77·7-s − 1.41·8-s + 0.721·9-s − 1.26·10-s + 0.254·11-s + 1.47·12-s − 0.829·13-s − 2.51·14-s + 0.877·15-s + 5/4·16-s − 1.33·17-s − 1.02·18-s − 1.94·19-s + 1.34·20-s + 1.74·21-s − 0.359·22-s + 0.407·23-s − 1.38·24-s + 3/5·25-s + 1.17·26-s + 1.45·27-s + 2.66·28-s + ⋯ |
Λ(s)=(=(100s/2ΓC(s)2L(s)Λ(22−s)
Λ(s)=(=(100s/2ΓC(s+21/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
100
= 22⋅52
|
Sign: |
1
|
Analytic conductor: |
781.075 |
Root analytic conductor: |
5.28656 |
Motivic weight: |
21 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 100, ( :21/2,21/2), 1)
|
Particular Values
L(11) |
≈ |
3.065780323 |
L(21) |
≈ |
3.065780323 |
L(223) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+p10T)2 |
| 5 | C1 | (1−p10T)2 |
good | 3 | D4 | 1−33436pT+10326754p5T2−33436p22T3+p42T4 |
| 7 | D4 | 1−189842188pT+29983126517490222p2T2−189842188p22T3+p42T4 |
| 11 | D4 | 1−21869194224T+12⋯66T2−21869194224p21T3+p42T4 |
| 13 | D4 | 1+412060138772T+36⋯94pT2+412060138772p21T3+p42T4 |
| 17 | D4 | 1+11074763456364T+79⋯74pT2+11074763456364p21T3+p42T4 |
| 19 | D4 | 1+52072861011560T+91⋯02pT2+52072861011560p21T3+p42T4 |
| 23 | D4 | 1−80988875151948T+37⋯22T2−80988875151948p21T3+p42T4 |
| 29 | D4 | 1−264315081456060T+28⋯58T2−264315081456060p21T3+p42T4 |
| 31 | D4 | 1−2126016880188664T+36⋯86T2−2126016880188664p21T3+p42T4 |
| 37 | D4 | 1+9721711577644724T+16⋯18T2+9721711577644724p21T3+p42T4 |
| 41 | D4 | 1−221161031209870884T+25⋯46T2−221161031209870884p21T3+p42T4 |
| 43 | D4 | 1+43823174002198412T+40⋯22T2+43823174002198412p21T3+p42T4 |
| 47 | D4 | 1−4384129302297468pT+22⋯98T2−4384129302297468p22T3+p42T4 |
| 53 | D4 | 1+612435371018710692T+25⋯22T2+612435371018710692p21T3+p42T4 |
| 59 | D4 | 1−4752208294289856120T+41⋯02pT2−4752208294289856120p21T3+p42T4 |
| 61 | D4 | 1−4748119038295687324T+61⋯66T2−4748119038295687324p21T3+p42T4 |
| 67 | D4 | 1−22301925713082765436T+56⋯58T2−22301925713082765436p21T3+p42T4 |
| 71 | D4 | 1−2201035283486261544T+49⋯26T2−2201035283486261544p21T3+p42T4 |
| 73 | D4 | 1−56149494460474652548T+34⋯22T2−56149494460474652548p21T3+p42T4 |
| 79 | D4 | 1+42382706176352134640T+93⋯58T2+42382706176352134640p21T3+p42T4 |
| 83 | D4 | 1−1335343926003173268T−64⋯78T2−1335343926003173268p21T3+p42T4 |
| 89 | D4 | 1−25⋯80T+18⋯78T2−25⋯80p21T3+p42T4 |
| 97 | D4 | 1+15⋯04T+16⋯98T2+15⋯04p21T3+p42T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.06818046620703130116479767172, −15.21912155159924401248132221141, −14.49413679433034969440174975376, −14.35683781409278282128308605557, −13.11934151912874543148122010925, −12.35154341522367395879062644715, −11.10058017522273584326129807660, −10.83923921608156252125173020419, −9.876867116057108418201930643452, −9.124673078026105705924920854388, −8.489474929124001929838925423219, −8.101501770434156580374706528036, −7.06369318748437245070050587819, −6.38797998370977605118697145051, −5.00712838776311479702800748208, −4.21010937299549460776127580880, −2.38643130931047642659572170273, −2.35774451691357030838514304202, −1.52849586582870041598465895635, −0.67386207780214672162600015047,
0.67386207780214672162600015047, 1.52849586582870041598465895635, 2.35774451691357030838514304202, 2.38643130931047642659572170273, 4.21010937299549460776127580880, 5.00712838776311479702800748208, 6.38797998370977605118697145051, 7.06369318748437245070050587819, 8.101501770434156580374706528036, 8.489474929124001929838925423219, 9.124673078026105705924920854388, 9.876867116057108418201930643452, 10.83923921608156252125173020419, 11.10058017522273584326129807660, 12.35154341522367395879062644715, 13.11934151912874543148122010925, 14.35683781409278282128308605557, 14.49413679433034969440174975376, 15.21912155159924401248132221141, 16.06818046620703130116479767172