L(s) = 1 | − 512·2-s − 6.30e3·3-s + 1.96e5·4-s − 7.81e5·5-s + 3.22e6·6-s + 6.54e6·7-s − 6.71e7·8-s + 2.35e6·9-s + 4.00e8·10-s + 1.18e9·11-s − 1.24e9·12-s − 2.01e9·13-s − 3.35e9·14-s + 4.92e9·15-s + 2.14e10·16-s − 1.87e10·17-s − 1.20e9·18-s − 1.36e11·19-s − 1.53e11·20-s − 4.12e10·21-s − 6.08e11·22-s − 6.49e11·23-s + 4.23e11·24-s + 4.57e11·25-s + 1.03e12·26-s − 5.93e11·27-s + 1.28e12·28-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 0.555·3-s + 3/2·4-s − 0.894·5-s + 0.785·6-s + 0.429·7-s − 1.41·8-s + 0.0182·9-s + 1.26·10-s + 1.67·11-s − 0.832·12-s − 0.686·13-s − 0.606·14-s + 0.496·15-s + 5/4·16-s − 0.652·17-s − 0.0257·18-s − 1.84·19-s − 1.34·20-s − 0.238·21-s − 2.36·22-s − 1.72·23-s + 0.785·24-s + 3/5·25-s + 0.970·26-s − 0.404·27-s + 0.643·28-s + ⋯ |
Λ(s)=(=(100s/2ΓC(s)2L(s)Λ(18−s)
Λ(s)=(=(100s/2ΓC(s+17/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
100
= 22⋅52
|
Sign: |
1
|
Analytic conductor: |
335.703 |
Root analytic conductor: |
4.28044 |
Motivic weight: |
17 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 100, ( :17/2,17/2), 1)
|
Particular Values
L(9) |
= |
0 |
L(21) |
= |
0 |
L(219) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+p8T)2 |
| 5 | C1 | (1+p8T)2 |
good | 3 | D4 | 1+6308T+4159738p2T2+6308p17T3+p34T4 |
| 7 | D4 | 1−6543844T+6366439481202p2T2−6543844p17T3+p34T4 |
| 11 | D4 | 1−9829824p2T+10967934276982726p2T2−9829824p19T3+p34T4 |
| 13 | D4 | 1+155224556pT+87811455351436398p2T2+155224556p18T3+p34T4 |
| 17 | D4 | 1+1103272908pT+87⋯78T2+1103272908p18T3+p34T4 |
| 19 | D4 | 1+136704830600T+13⋯78T2+136704830600p17T3+p34T4 |
| 23 | D4 | 1+649234170708T+27⋯22T2+649234170708p17T3+p34T4 |
| 29 | D4 | 1+4696543420020T+20⋯18T2+4696543420020p17T3+p34T4 |
| 31 | D4 | 1−7120867378744T+30⋯06T2−7120867378744p17T3+p34T4 |
| 37 | D4 | 1−9933114637444T+42⋯18T2−9933114637444p17T3+p34T4 |
| 41 | D4 | 1−9622711880844T+40⋯46T2−9622711880844p17T3+p34T4 |
| 43 | D4 | 1−179265953764pT−61⋯38T2−179265953764p18T3+p34T4 |
| 47 | D4 | 1+466072575837996T+10⋯78T2+466072575837996p17T3+p34T4 |
| 53 | D4 | 1+623333120284428T+33⋯22T2+623333120284428p17T3+p34T4 |
| 59 | D4 | 1−654616071995160T+97⋯38T2−654616071995160p17T3+p34T4 |
| 61 | D4 | 1−1329040385162884T+16⋯06T2−1329040385162884p17T3+p34T4 |
| 67 | D4 | 1+4249016411877596T+22⋯58T2+4249016411877596p17T3+p34T4 |
| 71 | D4 | 1−2035131949347624T−98⋯74T2−2035131949347624p17T3+p34T4 |
| 73 | D4 | 1−2248593461347972T+96⋯02T2−2248593461347972p17T3+p34T4 |
| 79 | D4 | 1−19188427678495120T+45⋯18T2−19188427678495120p17T3+p34T4 |
| 83 | D4 | 1+18474649086611988T+91⋯82T2+18474649086611988p17T3+p34T4 |
| 89 | D4 | 1+17458912916395020T+29⋯22pT2+17458912916395020p17T3+p34T4 |
| 97 | D4 | 1−195934325822490244T+21⋯58T2−195934325822490244p17T3+p34T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.44060109450586892843172728268, −15.80511956302180615323028788421, −14.75560750667871913677444486947, −14.63122790578675903841159792684, −12.97191703121270810045472509464, −12.03366484773966092165775879482, −11.49386042541845569500570278901, −11.09736117497202661028797722908, −10.00949088855829780957427183570, −9.293081749459928340961998145999, −8.330234956749635530572762170744, −7.83443484987907512307869010544, −6.65212381802034175078729787725, −6.24293214062582122949390919918, −4.58681730151072479810673840130, −3.73470910704275074307727234376, −2.16006779529385751767201227750, −1.41911298626837526464284591090, 0, 0,
1.41911298626837526464284591090, 2.16006779529385751767201227750, 3.73470910704275074307727234376, 4.58681730151072479810673840130, 6.24293214062582122949390919918, 6.65212381802034175078729787725, 7.83443484987907512307869010544, 8.330234956749635530572762170744, 9.293081749459928340961998145999, 10.00949088855829780957427183570, 11.09736117497202661028797722908, 11.49386042541845569500570278901, 12.03366484773966092165775879482, 12.97191703121270810045472509464, 14.63122790578675903841159792684, 14.75560750667871913677444486947, 15.80511956302180615323028788421, 16.44060109450586892843172728268