L(s) = 1 | + 32·2-s − 366·3-s + 512·4-s − 3.75e3·5-s − 1.17e4·6-s − 1.68e4·7-s + 6.69e4·9-s − 1.20e5·10-s − 3.46e5·11-s − 1.87e5·12-s − 4.65e5·13-s − 5.38e5·14-s + 1.37e6·15-s − 2.62e5·16-s + 3.76e6·17-s + 2.14e6·18-s − 1.92e6·20-s + 6.15e6·21-s − 1.10e7·22-s − 1.04e7·23-s + 4.29e6·25-s − 1.48e7·26-s − 2.16e7·27-s − 8.60e6·28-s + 4.39e7·30-s − 2.01e7·31-s − 8.38e6·32-s + ⋯ |
L(s) = 1 | + 2-s − 1.50·3-s + 1/2·4-s − 6/5·5-s − 1.50·6-s − 1.00·7-s + 1.13·9-s − 6/5·10-s − 2.15·11-s − 0.753·12-s − 1.25·13-s − 1.00·14-s + 1.80·15-s − 1/4·16-s + 2.64·17-s + 1.13·18-s − 3/5·20-s + 1.50·21-s − 2.15·22-s − 1.62·23-s + 0.439·25-s − 1.25·26-s − 1.50·27-s − 0.500·28-s + 1.80·30-s − 0.703·31-s − 1/4·32-s + ⋯ |
Λ(s)=(=(100s/2ΓC(s)2L(s)Λ(11−s)
Λ(s)=(=(100s/2ΓC(s+5)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
100
= 22⋅52
|
Sign: |
1
|
Analytic conductor: |
40.3678 |
Root analytic conductor: |
2.52062 |
Motivic weight: |
10 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 100, ( :5,5), 1)
|
Particular Values
L(211) |
≈ |
0.1769415757 |
L(21) |
≈ |
0.1769415757 |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1−p5T+p9T2 |
| 5 | C2 | 1+6p4T+p10T2 |
good | 3 | C22 | 1+122pT+7442p2T2+122p11T3+p20T4 |
| 7 | C22 | 1+2402pT+2884802p2T2+2402p11T3+p20T4 |
| 11 | C2 | (1+173398T+p10T2)2 |
| 13 | C22 | 1+465246T+108226920258T2+465246p10T3+p20T4 |
| 17 | C22 | 1−3760066T+7069048162178T2−3760066p10T3+p20T4 |
| 19 | C22 | 1−11048698082002T2+p20T4 |
| 23 | C22 | 1+10456526T+54669467994338T2+10456526p10T3+p20T4 |
| 29 | C22 | 1−226828718694802T2+p20T4 |
| 31 | C2 | (1+10065998T+p10T2)2 |
| 37 | C22 | 1−112775826T+6359193464991138T2−112775826p10T3+p20T4 |
| 41 | C2 | (1+153003598T+p10T2)2 |
| 43 | C22 | 1−118744914T+7050177300433698T2−118744914p10T3+p20T4 |
| 47 | C22 | 1−344678706T+59401705184917218T2−344678706p10T3+p20T4 |
| 53 | C22 | 1−139826p2T+9775655138p4T2−139826p12T3+p20T4 |
| 59 | C22 | 1−155272002554242p2T2+p20T4 |
| 61 | C2 | (1−906185802T+p10T2)2 |
| 67 | C22 | 1+1924147934T+1851172635958234178T2+1924147934p10T3+p20T4 |
| 71 | C2 | (1+3120877598T+p10T2)2 |
| 73 | C22 | 1+1272678526T+809855315270766338T2+1272678526p10T3+p20T4 |
| 79 | C22 | 1−15063541390202404802T2+p20T4 |
| 83 | C22 | 1+10367644206T+53744023191102685218T2+10367644206p10T3+p20T4 |
| 89 | C22 | 1−1969041775268808802T2+p20T4 |
| 97 | C22 | 1+1280722494T+820125053318790018T2+1280722494p10T3+p20T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.35384534432907741148630021168, −18.23498356647136324701241640361, −17.09951454350802975732890847444, −16.38129556966235166425389175243, −16.06842489748991662543680974712, −15.31579883164481178863418187891, −14.55785196726634088092852042834, −13.29615959638143144285255479439, −12.69033673523140136186095112993, −11.86043780059560216164986306203, −11.83386948381122037982389703625, −10.26104920901986566020196732926, −10.08791032879372778294701243055, −7.82031297319141331675296873376, −7.35077607274388347352801449420, −5.63607573809750764452176700342, −5.51890087363622651618771930643, −4.11258631128076034722736884796, −2.91353861480390921986173232870, −0.21298830104623525771142697366,
0.21298830104623525771142697366, 2.91353861480390921986173232870, 4.11258631128076034722736884796, 5.51890087363622651618771930643, 5.63607573809750764452176700342, 7.35077607274388347352801449420, 7.82031297319141331675296873376, 10.08791032879372778294701243055, 10.26104920901986566020196732926, 11.83386948381122037982389703625, 11.86043780059560216164986306203, 12.69033673523140136186095112993, 13.29615959638143144285255479439, 14.55785196726634088092852042834, 15.31579883164481178863418187891, 16.06842489748991662543680974712, 16.38129556966235166425389175243, 17.09951454350802975732890847444, 18.23498356647136324701241640361, 19.35384534432907741148630021168