L(s) = 1 | + 2-s + 6·3-s + 4-s + 10·5-s + 6·6-s − 14·7-s + 9·8-s + 27·9-s + 10·10-s − 22·11-s + 6·12-s − 22·13-s − 14·14-s + 60·15-s − 47·16-s + 116·17-s + 27·18-s + 102·19-s + 10·20-s − 84·21-s − 22·22-s + 260·23-s + 54·24-s + 75·25-s − 22·26-s + 108·27-s − 14·28-s + ⋯ |
L(s) = 1 | + 0.353·2-s + 1.15·3-s + 1/8·4-s + 0.894·5-s + 0.408·6-s − 0.755·7-s + 0.397·8-s + 9-s + 0.316·10-s − 0.603·11-s + 0.144·12-s − 0.469·13-s − 0.267·14-s + 1.03·15-s − 0.734·16-s + 1.65·17-s + 0.353·18-s + 1.23·19-s + 0.111·20-s − 0.872·21-s − 0.213·22-s + 2.35·23-s + 0.459·24-s + 3/5·25-s − 0.165·26-s + 0.769·27-s − 0.0944·28-s + ⋯ |
Λ(s)=(=(11025s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(11025s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
11025
= 32⋅52⋅72
|
Sign: |
1
|
Analytic conductor: |
38.3805 |
Root analytic conductor: |
2.48901 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 11025, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
4.447550952 |
L(21) |
≈ |
4.447550952 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−pT)2 |
| 5 | C1 | (1−pT)2 |
| 7 | C1 | (1+pT)2 |
good | 2 | D4 | 1−T−p3T3+p6T4 |
| 11 | D4 | 1+2pT+2718T2+2p4T3+p6T4 |
| 13 | D4 | 1+22T+4450T2+22p3T3+p6T4 |
| 17 | D4 | 1−116T+9030T2−116p3T3+p6T4 |
| 19 | D4 | 1−102T+13134T2−102p3T3+p6T4 |
| 23 | D4 | 1−260T+34734T2−260p3T3+p6T4 |
| 29 | D4 | 1+196T+20942T2+196p3T3+p6T4 |
| 31 | D4 | 1−150T+36542T2−150p3T3+p6T4 |
| 37 | D4 | 1+96T+82550T2+96p3T3+p6T4 |
| 41 | D4 | 1+176T−16914T2+176p3T3+p6T4 |
| 43 | D4 | 1+8pT+171958T2+8p4T3+p6T4 |
| 47 | D4 | 1−560T+248606T2−560p3T3+p6T4 |
| 53 | D4 | 1−326T+204138T2−326p3T3+p6T4 |
| 59 | D4 | 1+844T+474182T2+844p3T3+p6T4 |
| 61 | D4 | 1+204T+455006T2+204p3T3+p6T4 |
| 67 | D4 | 1+104T+537670T2+104p3T3+p6T4 |
| 71 | D4 | 1−1670T+1384382T2−1670p3T3+p6T4 |
| 73 | D4 | 1+386T+152218T2+386p3T3+p6T4 |
| 79 | D4 | 1+888T+1007454T2+888p3T3+p6T4 |
| 83 | D4 | 1−928T+600710T2−928p3T3+p6T4 |
| 89 | D4 | 1−588T+1495334T2−588p3T3+p6T4 |
| 97 | D4 | 1−522T+291282T2−522p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.40546592608703245871921898326, −13.30346175272847329227780832686, −12.73831602913954178485104586965, −12.18250555097709804072936119577, −11.53088546756880426510015652679, −10.67678270051248069312468546548, −10.24689496600514792997960725745, −9.750487568024786448080816428638, −9.153033322238177666395213432806, −8.959543556742975218076338319296, −7.920982822273216246053602816816, −7.35197583697436006371302737442, −7.02876736555687686837865597329, −6.13911297908769492799448079281, −5.17693363736470717283113350431, −4.97877979516232912120258346709, −3.60040878612527266076080746053, −3.08354544168682833867216834671, −2.36836063550997595589839875669, −1.18419157274904927371218082605,
1.18419157274904927371218082605, 2.36836063550997595589839875669, 3.08354544168682833867216834671, 3.60040878612527266076080746053, 4.97877979516232912120258346709, 5.17693363736470717283113350431, 6.13911297908769492799448079281, 7.02876736555687686837865597329, 7.35197583697436006371302737442, 7.920982822273216246053602816816, 8.959543556742975218076338319296, 9.153033322238177666395213432806, 9.750487568024786448080816428638, 10.24689496600514792997960725745, 10.67678270051248069312468546548, 11.53088546756880426510015652679, 12.18250555097709804072936119577, 12.73831602913954178485104586965, 13.30346175272847329227780832686, 13.40546592608703245871921898326