Properties

Label 4-3528e2-1.1-c0e2-0-5
Degree $4$
Conductor $12446784$
Sign $1$
Analytic cond. $3.10006$
Root an. cond. $1.32691$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 16-s + 2·25-s + 4·43-s − 64-s + 4·67-s − 2·100-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s − 4·172-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  − 4-s + 16-s + 2·25-s + 4·43-s − 64-s + 4·67-s − 2·100-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s − 4·172-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12446784 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12446784\)    =    \(2^{6} \cdot 3^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(3.10006\)
Root analytic conductor: \(1.32691\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12446784,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.256126637\)
\(L(\frac12)\) \(\approx\) \(1.256126637\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
7 \( 1 \)
good5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
11$C_2$ \( ( 1 + T^{2} )^{2} \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2$ \( ( 1 + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T^{2} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{2} \)
43$C_1$ \( ( 1 - T )^{4} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_2$ \( ( 1 + T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_1$ \( ( 1 - T )^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.899361819602058303556580214097, −8.725541625605721927706512258917, −8.124673474241451557566521976661, −7.964367688141004545372412970588, −7.52776675909715434508590690277, −7.08637248517300635981022897677, −6.75589416357485867414871967653, −6.31777272154704781262586250683, −5.88824008691254355784721637350, −5.41520702284285638226380296923, −5.22450797416426672194843837321, −4.69687866381282804432004504054, −4.39743715455457080207742659710, −3.76621642528939160337731498578, −3.76421719505902442970045466875, −2.91982300187330564139886741939, −2.61576119687548318090402244022, −2.08613502998531756224438738549, −1.08731138611794378212789298646, −0.843981798799303935556929761975, 0.843981798799303935556929761975, 1.08731138611794378212789298646, 2.08613502998531756224438738549, 2.61576119687548318090402244022, 2.91982300187330564139886741939, 3.76421719505902442970045466875, 3.76621642528939160337731498578, 4.39743715455457080207742659710, 4.69687866381282804432004504054, 5.22450797416426672194843837321, 5.41520702284285638226380296923, 5.88824008691254355784721637350, 6.31777272154704781262586250683, 6.75589416357485867414871967653, 7.08637248517300635981022897677, 7.52776675909715434508590690277, 7.964367688141004545372412970588, 8.124673474241451557566521976661, 8.725541625605721927706512258917, 8.899361819602058303556580214097

Graph of the $Z$-function along the critical line