L(s) = 1 | + 4·2-s + 10·4-s + 32·8-s + 10·9-s − 4·11-s + 87·16-s + 40·18-s − 16·22-s + 12·23-s − 52·25-s + 8·29-s + 196·32-s + 100·36-s − 8·37-s + 32·43-s − 40·44-s + 48·46-s − 208·50-s − 8·53-s + 32·58-s + 438·64-s + 20·67-s + 8·71-s + 320·72-s − 32·74-s − 8·79-s + 67·81-s + ⋯ |
L(s) = 1 | + 2.82·2-s + 5·4-s + 11.3·8-s + 10/3·9-s − 1.20·11-s + 87/4·16-s + 9.42·18-s − 3.41·22-s + 2.50·23-s − 10.3·25-s + 1.48·29-s + 34.6·32-s + 50/3·36-s − 1.31·37-s + 4.87·43-s − 6.03·44-s + 7.07·46-s − 29.4·50-s − 1.09·53-s + 4.20·58-s + 54.7·64-s + 2.44·67-s + 0.949·71-s + 37.7·72-s − 3.71·74-s − 0.900·79-s + 67/9·81-s + ⋯ |
Λ(s)=(=((732⋅1316)s/2ΓC(s)16L(s)Λ(2−s)
Λ(s)=(=((732⋅1316)s/2ΓC(s+1/2)16L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
694.6913152 |
L(21) |
≈ |
694.6913152 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1+34T2+430T4+4984T6+76567T8+4984p2T10+430p4T12+34p6T14+p8T16 |
good | 2 | (1−pT+T2−3pT3+5pT4−p2T5+27T6−5p3T7+13T8−5p4T9+27p2T10−p5T11+5p5T12−3p6T13+p6T14−p8T15+p8T16)2 |
| 3 | 1−10T2+11pT4−58T6+124pT8−2116T10+6131T12−1774p2T14+50155T16−1774p4T18+6131p4T20−2116p6T22+124p9T24−58p10T26+11p13T28−10p14T30+p16T32 |
| 5 | (1+26T2+311T4+2358T6+13281T8+2358p2T10+311p4T12+26p6T14+p8T16)2 |
| 11 | (1+2T−35T2−30T3+802T4+256T5−12663T6−1238T7+153211T8−1238pT9−12663p2T10+256p3T11+802p4T12−30p5T13−35p6T14+2p7T15+p8T16)2 |
| 17 | 1−78T2+2942T4−74036T6+1506893T8−29044204T10+585942562T12−11972588178T14+220591800628T16−11972588178p2T18+585942562p4T20−29044204p6T22+1506893p8T24−74036p10T26+2942p12T28−78p14T30+p16T32 |
| 19 | 1−58T2+1661T4−9818T6−676340T8+23829108T10−206707529T12−5249133354T14+201079481139T16−5249133354p2T18−206707529p4T20+23829108p6T22−676340p8T24−9818p10T26+1661p12T28−58p14T30+p16T32 |
| 23 | (1−6T−42T2+248T3+1306T4−4598T5−43856T6+22390T7+1346875T8+22390pT9−43856p2T10−4598p3T11+1306p4T12+248p5T13−42p6T14−6p7T15+p8T16)2 |
| 29 | (1−4T−15T2+192T3−1568T4+5696T5−pT6−217482T7+2139619T8−217482pT9−p3T10+5696p3T11−1568p4T12+192p5T13−15p6T14−4p7T15+p8T16)2 |
| 31 | (1+178T2+15406T4+835752T6+30991415T8+835752p2T10+15406p4T12+178p6T14+p8T16)2 |
| 37 | (1+4T−46T2+152T3+2182T4−7008T5+73816T6+392460T7−3440049T8+392460pT9+73816p2T10−7008p3T11+2182p4T12+152p5T13−46p6T14+4p7T15+p8T16)2 |
| 41 | 1−152T2+16324T4−1214800T6+75014282T8−3793839848T10+172337071760T12−7119768845032T14+293658219524371T16−7119768845032p2T18+172337071760p4T20−3793839848p6T22+75014282p8T24−1214800p10T26+16324p12T28−152p14T30+p16T32 |
| 43 | (1−16T+99T2−472T3+1730T4+7168T5−116817T6+1124260T7−9477617T8+1124260pT9−116817p2T10+7168p3T11+1730p4T12−472p5T13+99p6T14−16p7T15+p8T16)2 |
| 47 | (1+150T2+11494T4+707936T6+37180919T8+707936p2T10+11494p4T12+150p6T14+p8T16)2 |
| 53 | (1+2T+132T2+248T3+8645T4+248pT5+132p2T6+2p3T7+p4T8)4 |
| 59 | 1−278T2+40998T4−3814004T6+237186965T8−9386021884T10+154854604410T12+7674718497878T14−788274714787388T16+7674718497878p2T18+154854604410p4T20−9386021884p6T22+237186965p8T24−3814004p10T26+40998p12T28−278p14T30+p16T32 |
| 61 | 1−380T2+76544T4−10897784T6+1227826114T8−116331500276T10+9578956327264T12−696692904086100T14+45045833784892083T16−696692904086100p2T18+9578956327264p4T20−116331500276p6T22+1227826114p8T24−10897784p10T26+76544p12T28−380p14T30+p16T32 |
| 67 | (1−10T−162T2+956T3+24917T4−71312T5−2420694T6+1789858T7+185730724T8+1789858pT9−2420694p2T10−71312p3T11+24917p4T12+956p5T13−162p6T14−10p7T15+p8T16)2 |
| 71 | (1−4T−102T2+696T3−1042T4−9336T5−125464T6−1401412T7+51152511T8−1401412pT9−125464p2T10−9336p3T11−1042p4T12+696p5T13−102p6T14−4p7T15+p8T16)2 |
| 73 | (1+156T2+7232T4+2020pT6+11253390T8+2020p3T10+7232p4T12+156p6T14+p8T16)2 |
| 79 | (1+2T+38T2−238T3+1686T4−238pT5+38p2T6+2p3T7+p4T8)4 |
| 83 | (1+314T2+46430T4+4837464T6+427877847T8+4837464p2T10+46430p4T12+314p6T14+p8T16)2 |
| 89 | 1−106T2−6635T4+2260150T6−56645140T8−20540045260T10+2028500040815T12+92860376641870T14−22701882367538285T16+92860376641870p2T18+2028500040815p4T20−20540045260p6T22−56645140p8T24+2260150p10T26−6635p12T28−106p14T30+p16T32 |
| 97 | 1−412T2+87509T4−11349760T6+907888036T8−32651756224T10−1974791695085T12+422191622326362T14−45739383615060693T16+422191622326362p2T18−1974791695085p4T20−32651756224p6T22+907888036p8T24−11349760p10T26+87509p12T28−412p14T30+p16T32 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.82971545980281424348696263257, −2.71465563260493320135431246918, −2.53676864066042077082901779177, −2.50572230772502125393385968961, −2.50453516339212674287377002269, −2.40507548721078497229187371039, −2.35079628947152365897669539918, −2.34584168565053353127241613396, −2.11912395278826651169602815346, −2.01061848449569760489930310482, −1.94674195769371218729679271588, −1.87272041631664334366659867596, −1.80515769542522829470395819796, −1.66158221927596276142838311504, −1.59058216955735166432475461521, −1.47572498512007748167774136262, −1.46984545366465835967030062283, −1.42568431320038204824636494391, −1.40864519121509738458608423867, −1.39684944977077239307035708651, −0.71053457165757075059635209742, −0.68533658273075388308636848416, −0.68030151007276984111322096984, −0.57490128015347619171821733892, −0.57451372504531519107677728228,
0.57451372504531519107677728228, 0.57490128015347619171821733892, 0.68030151007276984111322096984, 0.68533658273075388308636848416, 0.71053457165757075059635209742, 1.39684944977077239307035708651, 1.40864519121509738458608423867, 1.42568431320038204824636494391, 1.46984545366465835967030062283, 1.47572498512007748167774136262, 1.59058216955735166432475461521, 1.66158221927596276142838311504, 1.80515769542522829470395819796, 1.87272041631664334366659867596, 1.94674195769371218729679271588, 2.01061848449569760489930310482, 2.11912395278826651169602815346, 2.34584168565053353127241613396, 2.35079628947152365897669539918, 2.40507548721078497229187371039, 2.50453516339212674287377002269, 2.50572230772502125393385968961, 2.53676864066042077082901779177, 2.71465563260493320135431246918, 2.82971545980281424348696263257
Plot not available for L-functions of degree greater than 10.