Properties

Label 3-1-1.1-r0e3-p3.04p29.42m32.46-0
Degree $3$
Conductor $1$
Sign $1$
Analytic cond. $11.6429$
Root an. cond. $2.26649$
Arithmetic no
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Related objects

Downloads

Learn more

Dirichlet series

L(s)  = 1  + (1.28 − 0.0423i)2-s + (−0.288 − 0.280i)3-s + (0.359 − 0.150i)4-s + (−0.0432 − 0.854i)5-s + (−0.381 − 0.347i)6-s + (−0.287 + 0.403i)7-s + (−0.190 − 0.208i)8-s + (0.292 − 0.118i)9-s + (−0.0917 − 1.09i)10-s + (−0.246 − 0.391i)11-s + (−0.146 − 0.0575i)12-s + (−1.13 − 1.83i)13-s + (−0.350 + 0.530i)14-s + (−0.227 + 0.258i)15-s + (0.561 − 0.123i)16-s + (0.840 + 0.0416i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\Gamma_{\R}(s+29.4i) \, \Gamma_{\R}(s+3.03i) \, \Gamma_{\R}(s-32.4i) \, L(s)\cr=\mathstrut & \,\overline{\Lambda}(1-s)\end{aligned}\]

Invariants

Degree: \(3\)
Conductor: \(1\)
Sign: $1$
Analytic conductor: \(11.6429\)
Root analytic conductor: \(2.26649\)
Rational: no
Arithmetic: no
Primitive: yes
Self-dual: no
Selberg data: \((3,\ 1,\ (29.41987002i, 3.039198812i, -32.45906884i:\ ),\ 1)\)

Euler product

\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{3} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−23.714169, −22.487941, −21.452914, −19.024625, −16.812558, −14.838541, −13.722706, −12.019955, −10.090418, −6.950056, −4.685630, 0.764420, 3.185940, 4.910034, 5.748282, 7.981056, 10.031348, 12.418132, 12.736384, 14.348671, 15.886867, 17.626933, 19.556330, 21.285755, 22.542985, 23.721749, 24.997488

Graph of the $Z$-function along the critical line