L(s) = 1 | − 36·11-s + 24·19-s + 42·29-s − 6·31-s − 36·41-s + 12·49-s + 72·61-s + 2·64-s + 6·71-s + 24·79-s − 6·89-s − 42·101-s + 60·109-s + 702·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 18·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 10.8·11-s + 5.50·19-s + 7.79·29-s − 1.07·31-s − 5.62·41-s + 12/7·49-s + 9.21·61-s + 1/4·64-s + 0.712·71-s + 2.70·79-s − 0.635·89-s − 4.17·101-s + 5.74·109-s + 63.8·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
Λ(s)=(=((336⋅524)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((336⋅524)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.216230531 |
L(21) |
≈ |
5.216230531 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+p3T6+p6T12 |
| 5 | 1 |
good | 2 | 1−pT6−27T10+21T12−27p2T14−p7T18+p12T24 |
| 7 | 1−12T2+24T4+262T6−1944T8+8424T10−38205T12+8424p2T14−1944p4T16+262p6T18+24p8T20−12p10T22+p12T24 |
| 11 | (1+18T+135T2+513T3+675T4−3033T5−18422T6−3033pT7+675p2T8+513p3T9+135p4T10+18p5T11+p6T12)2 |
| 13 | 1+18T2−261T4−8633T6−40239T8+953919T10+19127910T12+953919p2T14−40239p4T16−8633p6T18−261p8T20+18p10T22+p12T24 |
| 17 | 1+84T2+3900T4+127966T6+3288456T8+70189416T10+1282121619T12+70189416p2T14+3288456p4T16+127966p6T18+3900p8T20+84p10T22+p12T24 |
| 19 | (1−12T+51T2−188T3+1314T4−5076T5+12699T6−5076pT7+1314p2T8−188p3T9+51p4T10−12p5T11+p6T12)2 |
| 23 | 1−72T2+2628T4−73730T6+1554876T8−25875612T10+500700963T12−25875612p2T14+1554876p4T16−73730p6T18+2628p8T20−72p10T22+p12T24 |
| 29 | (1−21T+207T2−1125T3+1890T4+22776T5−210023T6+22776pT7+1890p2T8−1125p3T9+207p4T10−21p5T11+p6T12)2 |
| 31 | (1+3T+24T2+80T3+423T4−4653T5−5787T6−4653pT7+423p2T8+80p3T9+24p4T10+3p5T11+p6T12)2 |
| 37 | 1+132T2+8412T4+391870T6+16229592T8+584807544T10+20378076867T12+584807544p2T14+16229592p4T16+391870p6T18+8412p8T20+132p10T22+p12T24 |
| 41 | (1+18T+171T2+1143T3+9009T4+79119T5+597574T6+79119pT7+9009p2T8+1143p3T9+171p4T10+18p5T11+p6T12)2 |
| 43 | 1−276T2+40134T4−3953309T6+292635369T8−17126403723T10+814017920361T12−17126403723p2T14+292635369p4T16−3953309p6T18+40134p8T20−276p10T22+p12T24 |
| 47 | 1+36T2+2574T4−23141T6−166887T8+70522893T10+7143449961T12+70522893p2T14−166887p4T16−23141p6T18+2574p8T20+36p10T22+p12T24 |
| 53 | (1−84T2+6072T4−362545T6+6072p2T8−84p4T10+p6T12)2 |
| 59 | (1+144T2−576T3+144pT4−97596T5+406765T6−97596pT7+144p3T8−576p3T9+144p4T10+p6T12)2 |
| 61 | (1−36T+756T2−190pT3+141336T4−1424232T5+12082719T6−1424232pT7+141336p2T8−190p4T9+756p4T10−36p5T11+p6T12)2 |
| 67 | 1−144T2+11844T4−912746T6+87406884T8−6957232452T10+499884420891T12−6957232452p2T14+87406884p4T16−912746p6T18+11844p8T20−144p10T22+p12T24 |
| 71 | (1−3T−150T2−63T3+13371T4+19698T5−1081649T6+19698pT7+13371p2T8−63p3T9−150p4T10−3p5T11+p6T12)2 |
| 73 | 1+408T2+95268T4+15399598T6+1905199452T8+187847914644T10+15132874130115T12+187847914644p2T14+1905199452p4T16+15399598p6T18+95268p8T20+408p10T22+p12T24 |
| 79 | (1−12T+204T2−2915T3+31545T4−326493T5+3330513T6−326493pT7+31545p2T8−2915p3T9+204p4T10−12p5T11+p6T12)2 |
| 83 | 1+468T2+93294T4+9694123T6+419139873T8−21991579731T10−4161640619895T12−21991579731p2T14+419139873p4T16+9694123p6T18+93294p8T20+468p10T22+p12T24 |
| 89 | (1+3T−186T2−585T3+18915T4+33708T5−1703351T6+33708pT7+18915p2T8−585p3T9−186p4T10+3p5T11+p6T12)2 |
| 97 | 1+93T2−1770T4−1760936T6−103886055T8+10655050167T10+2102618450697T12+10655050167p2T14−103886055p4T16−1760936p6T18−1770p8T20+93p10T22+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.33252427444800281087361549331, −3.32583475421166310092946574270, −3.25350824375078114235048697771, −3.05328623206781612081605159449, −2.97443540934827751570052927838, −2.85449468057580580454719898934, −2.70252703236316582122298059914, −2.66085796499277951586985337821, −2.59296822880133799517056746840, −2.50679298021494174889355704822, −2.45189780804244914999831040983, −2.40108414581629192260220702580, −2.32169170507917870786312608845, −2.24135412528041975636787624262, −2.08399801724437977880282913809, −1.79262514607155529390763129522, −1.71934796596379884188946755897, −1.48445222708352362642519633307, −1.21192609207470900952189099355, −1.14658906272257958365919149968, −0.77684381566177173291517508519, −0.62849322601942629842673597837, −0.61989409660249548682358214669, −0.49223401117379135420759553065, −0.38994917036326733227311862101,
0.38994917036326733227311862101, 0.49223401117379135420759553065, 0.61989409660249548682358214669, 0.62849322601942629842673597837, 0.77684381566177173291517508519, 1.14658906272257958365919149968, 1.21192609207470900952189099355, 1.48445222708352362642519633307, 1.71934796596379884188946755897, 1.79262514607155529390763129522, 2.08399801724437977880282913809, 2.24135412528041975636787624262, 2.32169170507917870786312608845, 2.40108414581629192260220702580, 2.45189780804244914999831040983, 2.50679298021494174889355704822, 2.59296822880133799517056746840, 2.66085796499277951586985337821, 2.70252703236316582122298059914, 2.85449468057580580454719898934, 2.97443540934827751570052927838, 3.05328623206781612081605159449, 3.25350824375078114235048697771, 3.32583475421166310092946574270, 3.33252427444800281087361549331
Plot not available for L-functions of degree greater than 10.