L(s) = 1 | − 4·2-s − 3-s − 5-s + 4·6-s + 22·8-s + 11·9-s + 4·10-s + 4·11-s + 2·13-s + 15-s − 32·16-s + 10·17-s − 44·18-s + 19-s − 16·22-s + 2·23-s − 22·24-s + 19·25-s − 8·26-s − 10·27-s + 3·29-s − 4·30-s − 16·31-s − 20·32-s − 4·33-s − 40·34-s + 26·37-s + ⋯ |
L(s) = 1 | − 2.82·2-s − 0.577·3-s − 0.447·5-s + 1.63·6-s + 7.77·8-s + 11/3·9-s + 1.26·10-s + 1.20·11-s + 0.554·13-s + 0.258·15-s − 8·16-s + 2.42·17-s − 10.3·18-s + 0.229·19-s − 3.41·22-s + 0.417·23-s − 4.49·24-s + 19/5·25-s − 1.56·26-s − 1.92·27-s + 0.557·29-s − 0.730·30-s − 2.87·31-s − 3.53·32-s − 0.696·33-s − 6.85·34-s + 4.27·37-s + ⋯ |
Λ(s)=(=((724⋅1312)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((724⋅1312)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4417567660 |
L(21) |
≈ |
0.4417567660 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1−2T−16T2−3T3+607T4−433T5−5615T6−433pT7+607p2T8−3p3T9−16p4T10−2p5T11+p6T12 |
good | 2 | (1+pT+3pT2+9T3+5p2T4+7p2T5+51T6+7p3T7+5p4T8+9p3T9+3p5T10+p6T11+p6T12)2 |
| 3 | 1+T−10T2−11T3+53T4+62T5−167T6−221T7+98pT8+535T9+79T10−604T11−1559T12−604pT13+79p2T14+535p3T15+98p5T16−221p5T17−167p6T18+62p7T19+53p8T20−11p9T21−10p10T22+p11T23+p12T24 |
| 5 | 1+T−18T2+pT3+193T4−192T5−1181T6+2139T7+908pT8−451p2T9−6679T10+26266T11+249T12+26266pT13−6679p2T14−451p5T15+908p5T16+2139p5T17−1181p6T18−192p7T19+193p8T20+p10T21−18p10T22+p11T23+p12T24 |
| 11 | 1−4T−29T2+108T3+477T4−113pT5−6686T6+7665T7+89323T8+423T9−1282040T10−249219T11+16505087T12−249219pT13−1282040p2T14+423p3T15+89323p4T16+7665p5T17−6686p6T18−113p8T19+477p8T20+108p9T21−29p10T22−4p11T23+p12T24 |
| 17 | (1−5T+90T2−411T3+3539T4−13744T5+78123T6−13744pT7+3539p2T8−411p3T9+90p4T10−5p5T11+p6T12)2 |
| 19 | 1−T−49T2−82T3+1336T4+4335T5−10907T6−99626T7−263580T8+1110690T9+9684539T10−2414194T11−215227743T12−2414194pT13+9684539p2T14+1110690p3T15−263580p4T16−99626p5T17−10907p6T18+4335p7T19+1336p8T20−82p9T21−49p10T22−p11T23+p12T24 |
| 23 | (1−T+32T2−52T3+1214T4−1383T5+21935T6−1383pT7+1214p2T8−52p3T9+32p4T10−p5T11+p6T12)2 |
| 29 | 1−3T−3pT2+94T3+158pT4+904T5−123467T6−308042T7+1215550T8+10832851T9+73693658T10−174959016T11−3324017493T12−174959016pT13+73693658p2T14+10832851p3T15+1215550p4T16−308042p5T17−123467p6T18+904p7T19+158p9T20+94p9T21−3p11T22−3p11T23+p12T24 |
| 31 | 1+16T+20T2−594T3+2163T4+43649T5−56125T6−1282696T7+2984747T8+22743273T9−180497697T10−655302586T11+2182678017T12−655302586pT13−180497697p2T14+22743273p3T15+2984747p4T16−1282696p5T17−56125p6T18+43649p7T19+2163p8T20−594p9T21+20p10T22+16p11T23+p12T24 |
| 37 | (1−13T+184T2−1054T3+7158T4−10573T5+113729T6−10573pT7+7158p2T8−1054p3T9+184p4T10−13p5T11+p6T12)2 |
| 41 | 1−8T−161T2+924T3+18241T4−64367T5−1502654T6+3175261T7+96068491T8−105301221T9−5078164754T10+1647875431T11+226350132753T12+1647875431pT13−5078164754p2T14−105301221p3T15+96068491p4T16+3175261p5T17−1502654p6T18−64367p7T19+18241p8T20+924p9T21−161p10T22−8p11T23+p12T24 |
| 43 | 1+11T−138T2−1349T3+16370T4+106653T5−1472431T6−5757651T7+106708219T8+224797058T9−6088028976T10−3777766292T11+288640495545T12−3777766292pT13−6088028976p2T14+224797058p3T15+106708219p4T16−5757651p5T17−1472431p6T18+106653p7T19+16370p8T20−1349p9T21−138p10T22+11p11T23+p12T24 |
| 47 | 1−T−104T2+189T3+5335T4−164pT5−69863T6−514255T7−7627520T8+55687467T9+662939941T10−1686387922T11−35399065407T12−1686387922pT13+662939941p2T14+55687467p3T15−7627520p4T16−514255p5T17−69863p6T18−164p8T19+5335p8T20+189p9T21−104p10T22−p11T23+p12T24 |
| 53 | 1+2T−214T2−252T3+24796T4+13772T5−1921862T6+82142T7+113089342T8−43114584T9−5653831794T10+1443208718T11+285781391787T12+1443208718pT13−5653831794p2T14−43114584p3T15+113089342p4T16+82142p5T17−1921862p6T18+13772p7T19+24796p8T20−252p9T21−214p10T22+2p11T23+p12T24 |
| 59 | (1−13T+5pT2−2839T3+38957T4−294699T5+2963017T6−294699pT7+38957p2T8−2839p3T9+5p5T10−13p5T11+p6T12)2 |
| 61 | 1−5T−140T2+373T3+8487T4+5202T5−147441T6−963135T7−4711566T8+13690661T9−1296684385T10+689962304T11+162150963097T12+689962304pT13−1296684385p2T14+13690661p3T15−4711566p4T16−963135p5T17−147441p6T18+5202p7T19+8487p8T20+373p9T21−140p10T22−5p11T23+p12T24 |
| 67 | 1+11T−175T2−2336T3+15663T4+247450T5−15954pT6−18125445T7+60512732T8+977936543T9−2490157221T10−26393757979T11+95373451231T12−26393757979pT13−2490157221p2T14+977936543p3T15+60512732p4T16−18125445p5T17−15954p7T18+247450p7T19+15663p8T20−2336p9T21−175p10T22+11p11T23+p12T24 |
| 71 | 1−6T−249T2+278T3+39793T4+68141T5−3761552T6−15648583T7+241594531T8+1275513473T9−10122739162T10−44683203723T11+523547364015T12−44683203723pT13−10122739162p2T14+1275513473p3T15+241594531p4T16−15648583p5T17−3761552p6T18+68141p7T19+39793p8T20+278p9T21−249p10T22−6p11T23+p12T24 |
| 73 | 1−30T+224T2+1118T3−5021T4−290169T5+1854677T6+9817892T7−27971653T8−688598777T9−1819010273T10+20701972840T11+235631264151T12+20701972840pT13−1819010273p2T14−688598777p3T15−27971653p4T16+9817892p5T17+1854677p6T18−290169p7T19−5021p8T20+1118p9T21+224p10T22−30p11T23+p12T24 |
| 79 | 1−7T−277T2+2628T3+34995T4−387429T5−3070086T6+26237658T7+339376855T8−565746882T9−45365142063T10−8895648284T11+4474615429807T12−8895648284pT13−45365142063p2T14−565746882p3T15+339376855p4T16+26237658p5T17−3070086p6T18−387429p7T19+34995p8T20+2628p9T21−277p10T22−7p11T23+p12T24 |
| 83 | (1−27T+656T2−10802T3+153994T4−1760871T5+17670883T6−1760871pT7+153994p2T8−10802p3T9+656p4T10−27p5T11+p6T12)2 |
| 89 | (1−4T+167T2−1648T3+21035T4−202110T5+2204075T6−202110pT7+21035p2T8−1648p3T9+167p4T10−4p5T11+p6T12)2 |
| 97 | 1−35T+278T2+3177T3−20496T4−1111333T5+13328183T6+54713297T7−1182920923T8−11775176076T9+251445486222T10−186060844192T11−17274836413101T12−186060844192pT13+251445486222p2T14−11775176076p3T15−1182920923p4T16+54713297p5T17+13328183p6T18−1111333p7T19−20496p8T20+3177p9T21+278p10T22−35p11T23+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.52683143997779211880704356583, −3.50589051999421539977626693469, −3.45383237494748981207863400597, −3.10619359074108145553187176376, −3.00386571948342543341490619828, −2.92934278500421617752703630122, −2.87563965479997819645837348140, −2.83753304758176781872754146496, −2.52479101997313739219425835019, −2.28768504223823744189439885375, −2.28492842216554993704442385648, −2.19552020756986417624906489263, −2.18762863127060956220944978898, −1.93368373237992002653196236689, −1.66812778624682861465806820869, −1.51937051905495275059087021785, −1.35379884565889016145538646438, −1.34070592054714039825533346688, −1.13233025484344767286346958763, −1.06037455747608530093793971085, −0.909927814578637257170161400004, −0.811997872974530704723468565031, −0.67884128888582850562125857081, −0.57832258904084789940288647068, −0.19818429921661631477491650500,
0.19818429921661631477491650500, 0.57832258904084789940288647068, 0.67884128888582850562125857081, 0.811997872974530704723468565031, 0.909927814578637257170161400004, 1.06037455747608530093793971085, 1.13233025484344767286346958763, 1.34070592054714039825533346688, 1.35379884565889016145538646438, 1.51937051905495275059087021785, 1.66812778624682861465806820869, 1.93368373237992002653196236689, 2.18762863127060956220944978898, 2.19552020756986417624906489263, 2.28492842216554993704442385648, 2.28768504223823744189439885375, 2.52479101997313739219425835019, 2.83753304758176781872754146496, 2.87563965479997819645837348140, 2.92934278500421617752703630122, 3.00386571948342543341490619828, 3.10619359074108145553187176376, 3.45383237494748981207863400597, 3.50589051999421539977626693469, 3.52683143997779211880704356583
Plot not available for L-functions of degree greater than 10.