| L(s) = 1 | + 2·5-s + 7-s + 9-s + 13·11-s + 13·17-s − 6·19-s − 23-s + 3·25-s + 2·35-s − 4·43-s + 2·45-s − 47-s + 49-s + 26·55-s − 61-s + 63-s − 73-s + 13·77-s + 81-s + 2·83-s + 26·85-s − 12·95-s + 13·99-s − 8·101-s − 2·115-s + 13·119-s + 91·121-s + ⋯ |
| L(s) = 1 | + 2·5-s + 7-s + 9-s + 13·11-s + 13·17-s − 6·19-s − 23-s + 3·25-s + 2·35-s − 4·43-s + 2·45-s − 47-s + 49-s + 26·55-s − 61-s + 63-s − 73-s + 13·77-s + 81-s + 2·83-s + 26·85-s − 12·95-s + 13·99-s − 8·101-s − 2·115-s + 13·119-s + 91·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{24} \cdot 19^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 7^{24} \cdot 19^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(84.22212872\) |
| \(L(\frac12)\) |
\(\approx\) |
\(84.22212872\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} \) |
| 19 | \( ( 1 + T + T^{2} )^{6} \) |
| good | 3 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} ) \) |
| 5 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )^{2} \) |
| 11 | \( ( 1 - T )^{12}( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} ) \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 17 | \( ( 1 - T )^{12}( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} ) \) |
| 23 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} ) \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 31 | \( ( 1 - T + T^{2} )^{6}( 1 + T + T^{2} )^{6} \) |
| 37 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} ) \) |
| 41 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 43 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{4} \) |
| 47 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} ) \) |
| 53 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} ) \) |
| 59 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} ) \) |
| 61 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} ) \) |
| 67 | \( ( 1 - T + T^{2} )^{6}( 1 + T + T^{2} )^{6} \) |
| 71 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 73 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} ) \) |
| 79 | \( ( 1 - T + T^{2} )^{6}( 1 + T + T^{2} )^{6} \) |
| 83 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )^{2} \) |
| 89 | \( ( 1 - T + T^{3} - T^{4} + T^{6} - T^{8} + T^{9} - T^{11} + T^{12} )( 1 + T - T^{3} - T^{4} + T^{6} - T^{8} - T^{9} + T^{11} + T^{12} ) \) |
| 97 | \( ( 1 - T )^{12}( 1 + T )^{12} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.93689531258565180293756332406, −2.75754281777982667396991546772, −2.47637788272686510947371818493, −2.36707569047293314107486362276, −2.36504792047212276565044186775, −2.34251241415137264576270793660, −2.23858672416110247516125543086, −2.14037499429443075240159178424, −1.85371954292119635191926526194, −1.82426946175875713491119539182, −1.80916989962132957335363075105, −1.73174979884162949069378551601, −1.70807957493952314038705740703, −1.58483494639346233134762855115, −1.43317530542905081678152717267, −1.35142123893313140028802424287, −1.29934061426430815747899381288, −1.28018722407742017471674057945, −1.19281341270905322285417476442, −1.17181630180296655943325297226, −1.13607967126861699214337220069, −1.03967764171324950056753456484, −1.02985839075414102929696797308, −0.925553352201926599715407459906, −0.72245616435507809427634483158,
0.72245616435507809427634483158, 0.925553352201926599715407459906, 1.02985839075414102929696797308, 1.03967764171324950056753456484, 1.13607967126861699214337220069, 1.17181630180296655943325297226, 1.19281341270905322285417476442, 1.28018722407742017471674057945, 1.29934061426430815747899381288, 1.35142123893313140028802424287, 1.43317530542905081678152717267, 1.58483494639346233134762855115, 1.70807957493952314038705740703, 1.73174979884162949069378551601, 1.80916989962132957335363075105, 1.82426946175875713491119539182, 1.85371954292119635191926526194, 2.14037499429443075240159178424, 2.23858672416110247516125543086, 2.34251241415137264576270793660, 2.36504792047212276565044186775, 2.36707569047293314107486362276, 2.47637788272686510947371818493, 2.75754281777982667396991546772, 2.93689531258565180293756332406
Plot not available for L-functions of degree greater than 10.