Properties

Label 24-368e12-1.1-c1e12-0-1
Degree 2424
Conductor 6.168×10306.168\times 10^{30}
Sign 11
Analytic cond. 414475.414475.
Root an. cond. 1.714201.71420
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 2·4-s − 4·5-s + 4·6-s + 2·9-s − 8·10-s − 4·11-s + 4·12-s + 18·13-s − 8·15-s − 8·17-s + 4·18-s − 8·19-s − 8·20-s − 8·22-s + 8·25-s + 36·26-s + 8·27-s + 2·29-s − 16·30-s + 20·31-s − 8·33-s − 16·34-s + 4·36-s − 4·37-s − 16·38-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 4-s − 1.78·5-s + 1.63·6-s + 2/3·9-s − 2.52·10-s − 1.20·11-s + 1.15·12-s + 4.99·13-s − 2.06·15-s − 1.94·17-s + 0.942·18-s − 1.83·19-s − 1.78·20-s − 1.70·22-s + 8/5·25-s + 7.06·26-s + 1.53·27-s + 0.371·29-s − 2.92·30-s + 3.59·31-s − 1.39·33-s − 2.74·34-s + 2/3·36-s − 0.657·37-s − 2.59·38-s + ⋯

Functional equation

Λ(s)=((2482312)s/2ΓC(s)12L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 23^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((2482312)s/2ΓC(s+1/2)12L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 23^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 2424
Conductor: 24823122^{48} \cdot 23^{12}
Sign: 11
Analytic conductor: 414475.414475.
Root analytic conductor: 1.714201.71420
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (24, 2482312, ( :[1/2]12), 1)(24,\ 2^{48} \cdot 23^{12} ,\ ( \ : [1/2]^{12} ),\ 1 )

Particular Values

L(1)L(1) \approx 22.4240985122.42409851
L(12)L(\frac12) \approx 22.4240985122.42409851
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1pT+pT2p2T4+p3T53p2T6+p4T7p4T8+p5T10p6T11+p6T12 1 - p T + p T^{2} - p^{2} T^{4} + p^{3} T^{5} - 3 p^{2} T^{6} + p^{4} T^{7} - p^{4} T^{8} + p^{5} T^{10} - p^{6} T^{11} + p^{6} T^{12}
23 (1+T2)6 ( 1 + T^{2} )^{6}
good3 12T+2T28T3+5T4+20T52p2T6+70T7190T8+2p3T9+2T10176T11+1273T12176pT13+2p2T14+2p6T15190p4T16+70p5T172p8T18+20p7T19+5p8T208p9T21+2p10T222p11T23+p12T24 1 - 2 T + 2 T^{2} - 8 T^{3} + 5 T^{4} + 20 T^{5} - 2 p^{2} T^{6} + 70 T^{7} - 190 T^{8} + 2 p^{3} T^{9} + 2 T^{10} - 176 T^{11} + 1273 T^{12} - 176 p T^{13} + 2 p^{2} T^{14} + 2 p^{6} T^{15} - 190 p^{4} T^{16} + 70 p^{5} T^{17} - 2 p^{8} T^{18} + 20 p^{7} T^{19} + 5 p^{8} T^{20} - 8 p^{9} T^{21} + 2 p^{10} T^{22} - 2 p^{11} T^{23} + p^{12} T^{24}
5 1+4T+8T278T4212T5224T6+352T7+2731T8+4604T9+1568T1017028T1169976T1217028pT13+1568p2T14+4604p3T15+2731p4T16+352p5T17224p6T18212p7T1978p8T20+8p10T22+4p11T23+p12T24 1 + 4 T + 8 T^{2} - 78 T^{4} - 212 T^{5} - 224 T^{6} + 352 T^{7} + 2731 T^{8} + 4604 T^{9} + 1568 T^{10} - 17028 T^{11} - 69976 T^{12} - 17028 p T^{13} + 1568 p^{2} T^{14} + 4604 p^{3} T^{15} + 2731 p^{4} T^{16} + 352 p^{5} T^{17} - 224 p^{6} T^{18} - 212 p^{7} T^{19} - 78 p^{8} T^{20} + 8 p^{10} T^{22} + 4 p^{11} T^{23} + p^{12} T^{24}
7 168T2+2206T445092T6+13191p2T8977464pT10+54838648T12977464p3T14+13191p6T1645092p6T18+2206p8T2068p10T22+p12T24 1 - 68 T^{2} + 2206 T^{4} - 45092 T^{6} + 13191 p^{2} T^{8} - 977464 p T^{10} + 54838648 T^{12} - 977464 p^{3} T^{14} + 13191 p^{6} T^{16} - 45092 p^{6} T^{18} + 2206 p^{8} T^{20} - 68 p^{10} T^{22} + p^{12} T^{24}
11 1+4T+8T2+52T3134T41140T52136T613484T722433T8+75376T9+143376T10+912056T11+5810608T12+912056pT13+143376p2T14+75376p3T1522433p4T1613484p5T172136p6T181140p7T19134p8T20+52p9T21+8p10T22+4p11T23+p12T24 1 + 4 T + 8 T^{2} + 52 T^{3} - 134 T^{4} - 1140 T^{5} - 2136 T^{6} - 13484 T^{7} - 22433 T^{8} + 75376 T^{9} + 143376 T^{10} + 912056 T^{11} + 5810608 T^{12} + 912056 p T^{13} + 143376 p^{2} T^{14} + 75376 p^{3} T^{15} - 22433 p^{4} T^{16} - 13484 p^{5} T^{17} - 2136 p^{6} T^{18} - 1140 p^{7} T^{19} - 134 p^{8} T^{20} + 52 p^{9} T^{21} + 8 p^{10} T^{22} + 4 p^{11} T^{23} + p^{12} T^{24}
13 118T+162T284pT3+6673T437448T5+189270T6889826T7+3998178T817024206T9+68598506T10265184208T11+981270081T12265184208pT13+68598506p2T1417024206p3T15+3998178p4T16889826p5T17+189270p6T1837448p7T19+6673p8T2084p10T21+162p10T2218p11T23+p12T24 1 - 18 T + 162 T^{2} - 84 p T^{3} + 6673 T^{4} - 37448 T^{5} + 189270 T^{6} - 889826 T^{7} + 3998178 T^{8} - 17024206 T^{9} + 68598506 T^{10} - 265184208 T^{11} + 981270081 T^{12} - 265184208 p T^{13} + 68598506 p^{2} T^{14} - 17024206 p^{3} T^{15} + 3998178 p^{4} T^{16} - 889826 p^{5} T^{17} + 189270 p^{6} T^{18} - 37448 p^{7} T^{19} + 6673 p^{8} T^{20} - 84 p^{10} T^{21} + 162 p^{10} T^{22} - 18 p^{11} T^{23} + p^{12} T^{24}
17 (1+4T+64T2+246T3+2065T4+430pT5+43246T6+430p2T7+2065p2T8+246p3T9+64p4T10+4p5T11+p6T12)2 ( 1 + 4 T + 64 T^{2} + 246 T^{3} + 2065 T^{4} + 430 p T^{5} + 43246 T^{6} + 430 p^{2} T^{7} + 2065 p^{2} T^{8} + 246 p^{3} T^{9} + 64 p^{4} T^{10} + 4 p^{5} T^{11} + p^{6} T^{12} )^{2}
19 1+8T+32T2+8pT3+1418T4+8680T5+35616T6+179896T7+1102335T8+5132496T9+20297152T10+101957616T11+511158412T12+101957616pT13+20297152p2T14+5132496p3T15+1102335p4T16+179896p5T17+35616p6T18+8680p7T19+1418p8T20+8p10T21+32p10T22+8p11T23+p12T24 1 + 8 T + 32 T^{2} + 8 p T^{3} + 1418 T^{4} + 8680 T^{5} + 35616 T^{6} + 179896 T^{7} + 1102335 T^{8} + 5132496 T^{9} + 20297152 T^{10} + 101957616 T^{11} + 511158412 T^{12} + 101957616 p T^{13} + 20297152 p^{2} T^{14} + 5132496 p^{3} T^{15} + 1102335 p^{4} T^{16} + 179896 p^{5} T^{17} + 35616 p^{6} T^{18} + 8680 p^{7} T^{19} + 1418 p^{8} T^{20} + 8 p^{10} T^{21} + 32 p^{10} T^{22} + 8 p^{11} T^{23} + p^{12} T^{24}
29 12T+2T2424T3+2329T4+1780T5+81670T6841602T7+1013250T8114454pT9+172825850T10584430420T11337880919T12584430420pT13+172825850p2T14114454p4T15+1013250p4T16841602p5T17+81670p6T18+1780p7T19+2329p8T20424p9T21+2p10T222p11T23+p12T24 1 - 2 T + 2 T^{2} - 424 T^{3} + 2329 T^{4} + 1780 T^{5} + 81670 T^{6} - 841602 T^{7} + 1013250 T^{8} - 114454 p T^{9} + 172825850 T^{10} - 584430420 T^{11} - 337880919 T^{12} - 584430420 p T^{13} + 172825850 p^{2} T^{14} - 114454 p^{4} T^{15} + 1013250 p^{4} T^{16} - 841602 p^{5} T^{17} + 81670 p^{6} T^{18} + 1780 p^{7} T^{19} + 2329 p^{8} T^{20} - 424 p^{9} T^{21} + 2 p^{10} T^{22} - 2 p^{11} T^{23} + p^{12} T^{24}
31 (110T+143T21220T3+9818T467262T5+389725T667262pT7+9818p2T81220p3T9+143p4T1010p5T11+p6T12)2 ( 1 - 10 T + 143 T^{2} - 1220 T^{3} + 9818 T^{4} - 67262 T^{5} + 389725 T^{6} - 67262 p T^{7} + 9818 p^{2} T^{8} - 1220 p^{3} T^{9} + 143 p^{4} T^{10} - 10 p^{5} T^{11} + p^{6} T^{12} )^{2}
37 1+4T+8T2+232T3+14pT49756T516256T6371240T761273pT8+5079796T9+8338688T10+230905436T11+6813255824T12+230905436pT13+8338688p2T14+5079796p3T1561273p5T16371240p5T1716256p6T189756p7T19+14p9T20+232p9T21+8p10T22+4p11T23+p12T24 1 + 4 T + 8 T^{2} + 232 T^{3} + 14 p T^{4} - 9756 T^{5} - 16256 T^{6} - 371240 T^{7} - 61273 p T^{8} + 5079796 T^{9} + 8338688 T^{10} + 230905436 T^{11} + 6813255824 T^{12} + 230905436 p T^{13} + 8338688 p^{2} T^{14} + 5079796 p^{3} T^{15} - 61273 p^{5} T^{16} - 371240 p^{5} T^{17} - 16256 p^{6} T^{18} - 9756 p^{7} T^{19} + 14 p^{9} T^{20} + 232 p^{9} T^{21} + 8 p^{10} T^{22} + 4 p^{11} T^{23} + p^{12} T^{24}
41 1254T2+32757T42923858T6+201141458T811090716582T10+500464443061T1211090716582p2T14+201141458p4T162923858p6T18+32757p8T20254p10T22+p12T24 1 - 254 T^{2} + 32757 T^{4} - 2923858 T^{6} + 201141458 T^{8} - 11090716582 T^{10} + 500464443061 T^{12} - 11090716582 p^{2} T^{14} + 201141458 p^{4} T^{16} - 2923858 p^{6} T^{18} + 32757 p^{8} T^{20} - 254 p^{10} T^{22} + p^{12} T^{24}
43 120T+200T2924T31770T4+46524T5149592T61971628T7+27832799T8162350984T9+319707600T10+2960692776T1133765637196T12+2960692776pT13+319707600p2T14162350984p3T15+27832799p4T161971628p5T17149592p6T18+46524p7T191770p8T20924p9T21+200p10T2220p11T23+p12T24 1 - 20 T + 200 T^{2} - 924 T^{3} - 1770 T^{4} + 46524 T^{5} - 149592 T^{6} - 1971628 T^{7} + 27832799 T^{8} - 162350984 T^{9} + 319707600 T^{10} + 2960692776 T^{11} - 33765637196 T^{12} + 2960692776 p T^{13} + 319707600 p^{2} T^{14} - 162350984 p^{3} T^{15} + 27832799 p^{4} T^{16} - 1971628 p^{5} T^{17} - 149592 p^{6} T^{18} + 46524 p^{7} T^{19} - 1770 p^{8} T^{20} - 924 p^{9} T^{21} + 200 p^{10} T^{22} - 20 p^{11} T^{23} + p^{12} T^{24}
47 (1+8T+147T2+830T3+11506T4+50068T5+588553T6+50068pT7+11506p2T8+830p3T9+147p4T10+8p5T11+p6T12)2 ( 1 + 8 T + 147 T^{2} + 830 T^{3} + 11506 T^{4} + 50068 T^{5} + 588553 T^{6} + 50068 p T^{7} + 11506 p^{2} T^{8} + 830 p^{3} T^{9} + 147 p^{4} T^{10} + 8 p^{5} T^{11} + p^{6} T^{12} )^{2}
53 1+16T+128T2+1096T3+586T482200T5789600T67806032T745654497T8+14272960T9+1357857504T10+20288254256T11+219339685132T12+20288254256pT13+1357857504p2T14+14272960p3T1545654497p4T167806032p5T17789600p6T1882200p7T19+586p8T20+1096p9T21+128p10T22+16p11T23+p12T24 1 + 16 T + 128 T^{2} + 1096 T^{3} + 586 T^{4} - 82200 T^{5} - 789600 T^{6} - 7806032 T^{7} - 45654497 T^{8} + 14272960 T^{9} + 1357857504 T^{10} + 20288254256 T^{11} + 219339685132 T^{12} + 20288254256 p T^{13} + 1357857504 p^{2} T^{14} + 14272960 p^{3} T^{15} - 45654497 p^{4} T^{16} - 7806032 p^{5} T^{17} - 789600 p^{6} T^{18} - 82200 p^{7} T^{19} + 586 p^{8} T^{20} + 1096 p^{9} T^{21} + 128 p^{10} T^{22} + 16 p^{11} T^{23} + p^{12} T^{24}
59 18T+32T2+312T38214T4+37896T5+8352T61753848T7+32803743T8128318160T9+216281664T10+6242043056T11111681131956T12+6242043056pT13+216281664p2T14128318160p3T15+32803743p4T161753848p5T17+8352p6T18+37896p7T198214p8T20+312p9T21+32p10T228p11T23+p12T24 1 - 8 T + 32 T^{2} + 312 T^{3} - 8214 T^{4} + 37896 T^{5} + 8352 T^{6} - 1753848 T^{7} + 32803743 T^{8} - 128318160 T^{9} + 216281664 T^{10} + 6242043056 T^{11} - 111681131956 T^{12} + 6242043056 p T^{13} + 216281664 p^{2} T^{14} - 128318160 p^{3} T^{15} + 32803743 p^{4} T^{16} - 1753848 p^{5} T^{17} + 8352 p^{6} T^{18} + 37896 p^{7} T^{19} - 8214 p^{8} T^{20} + 312 p^{9} T^{21} + 32 p^{10} T^{22} - 8 p^{11} T^{23} + p^{12} T^{24}
61 112T+72T2436T3+10182T496692T5+522248T6962348T72556417T861735480T9+701613808T10+10527482232T11198377340076T12+10527482232pT13+701613808p2T1461735480p3T152556417p4T16962348p5T17+522248p6T1896692p7T19+10182p8T20436p9T21+72p10T2212p11T23+p12T24 1 - 12 T + 72 T^{2} - 436 T^{3} + 10182 T^{4} - 96692 T^{5} + 522248 T^{6} - 962348 T^{7} - 2556417 T^{8} - 61735480 T^{9} + 701613808 T^{10} + 10527482232 T^{11} - 198377340076 T^{12} + 10527482232 p T^{13} + 701613808 p^{2} T^{14} - 61735480 p^{3} T^{15} - 2556417 p^{4} T^{16} - 962348 p^{5} T^{17} + 522248 p^{6} T^{18} - 96692 p^{7} T^{19} + 10182 p^{8} T^{20} - 436 p^{9} T^{21} + 72 p^{10} T^{22} - 12 p^{11} T^{23} + p^{12} T^{24}
67 1+4T+8T2+76T31562T4+12052T5+63592T6+2247636T719830089T8229054608T9414801328T105101901080T11+60684024232T125101901080pT13414801328p2T14229054608p3T1519830089p4T16+2247636p5T17+63592p6T18+12052p7T191562p8T20+76p9T21+8p10T22+4p11T23+p12T24 1 + 4 T + 8 T^{2} + 76 T^{3} - 1562 T^{4} + 12052 T^{5} + 63592 T^{6} + 2247636 T^{7} - 19830089 T^{8} - 229054608 T^{9} - 414801328 T^{10} - 5101901080 T^{11} + 60684024232 T^{12} - 5101901080 p T^{13} - 414801328 p^{2} T^{14} - 229054608 p^{3} T^{15} - 19830089 p^{4} T^{16} + 2247636 p^{5} T^{17} + 63592 p^{6} T^{18} + 12052 p^{7} T^{19} - 1562 p^{8} T^{20} + 76 p^{9} T^{21} + 8 p^{10} T^{22} + 4 p^{11} T^{23} + p^{12} T^{24}
71 1586T2+166561T430467270T6+4018404002T8405369799706T10+32251408969501T12405369799706p2T14+4018404002p4T1630467270p6T18+166561p8T20586p10T22+p12T24 1 - 586 T^{2} + 166561 T^{4} - 30467270 T^{6} + 4018404002 T^{8} - 405369799706 T^{10} + 32251408969501 T^{12} - 405369799706 p^{2} T^{14} + 4018404002 p^{4} T^{16} - 30467270 p^{6} T^{18} + 166561 p^{8} T^{20} - 586 p^{10} T^{22} + p^{12} T^{24}
73 1422T2+93189T413924530T6+1577319194T8145394149854T10+11405608578077T12145394149854p2T14+1577319194p4T1613924530p6T18+93189p8T20422p10T22+p12T24 1 - 422 T^{2} + 93189 T^{4} - 13924530 T^{6} + 1577319194 T^{8} - 145394149854 T^{10} + 11405608578077 T^{12} - 145394149854 p^{2} T^{14} + 1577319194 p^{4} T^{16} - 13924530 p^{6} T^{18} + 93189 p^{8} T^{20} - 422 p^{10} T^{22} + p^{12} T^{24}
79 (1+2T+368T2+1126T3+60155T4+204124T5+5897072T6+204124pT7+60155p2T8+1126p3T9+368p4T10+2p5T11+p6T12)2 ( 1 + 2 T + 368 T^{2} + 1126 T^{3} + 60155 T^{4} + 204124 T^{5} + 5897072 T^{6} + 204124 p T^{7} + 60155 p^{2} T^{8} + 1126 p^{3} T^{9} + 368 p^{4} T^{10} + 2 p^{5} T^{11} + p^{6} T^{12} )^{2}
83 128T+392T25876T3+84726T4894300T5+9091496T699906012T7+883151735T87070500512T9+68426415632T10574097189672T11+4396159810696T12574097189672pT13+68426415632p2T147070500512p3T15+883151735p4T1699906012p5T17+9091496p6T18894300p7T19+84726p8T205876p9T21+392p10T2228p11T23+p12T24 1 - 28 T + 392 T^{2} - 5876 T^{3} + 84726 T^{4} - 894300 T^{5} + 9091496 T^{6} - 99906012 T^{7} + 883151735 T^{8} - 7070500512 T^{9} + 68426415632 T^{10} - 574097189672 T^{11} + 4396159810696 T^{12} - 574097189672 p T^{13} + 68426415632 p^{2} T^{14} - 7070500512 p^{3} T^{15} + 883151735 p^{4} T^{16} - 99906012 p^{5} T^{17} + 9091496 p^{6} T^{18} - 894300 p^{7} T^{19} + 84726 p^{8} T^{20} - 5876 p^{9} T^{21} + 392 p^{10} T^{22} - 28 p^{11} T^{23} + p^{12} T^{24}
89 1636T2+200302T441757740T6+6485840655T8793818201688T10+78404791964292T12793818201688p2T14+6485840655p4T1641757740p6T18+200302p8T20636p10T22+p12T24 1 - 636 T^{2} + 200302 T^{4} - 41757740 T^{6} + 6485840655 T^{8} - 793818201688 T^{10} + 78404791964292 T^{12} - 793818201688 p^{2} T^{14} + 6485840655 p^{4} T^{16} - 41757740 p^{6} T^{18} + 200302 p^{8} T^{20} - 636 p^{10} T^{22} + p^{12} T^{24}
97 (118T+446T26848T3+95053T41194926T5+11749682T61194926pT7+95053p2T86848p3T9+446p4T1018p5T11+p6T12)2 ( 1 - 18 T + 446 T^{2} - 6848 T^{3} + 95053 T^{4} - 1194926 T^{5} + 11749682 T^{6} - 1194926 p T^{7} + 95053 p^{2} T^{8} - 6848 p^{3} T^{9} + 446 p^{4} T^{10} - 18 p^{5} T^{11} + p^{6} T^{12} )^{2}
show more
show less
   L(s)=p j=124(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−3.87557437151970181617503925616, −3.83606431292845019629782321294, −3.81736409660597829717095700935, −3.71695112095465242551714340924, −3.45007524292191615862839947186, −3.41355724765996220278334269970, −3.17806668114539975544731516127, −3.09173358998269879976215077889, −3.02976387776582137422094243857, −2.98487059449252050967082662796, −2.74559376709046905725743728081, −2.63362742949133578597468971440, −2.40091883385074974794375894198, −2.39511395399818928211086739556, −2.33977441100508406934107123901, −2.14647611322891899249383761149, −2.09662749487150721203025885434, −1.89793299546158056440045377543, −1.89314453486748937723889002260, −1.24237843368814889930926872295, −1.12437948643308533121759092715, −0.983335368265266889618073751129, −0.981301979300453239216381280897, −0.76512604202615608171771781712, −0.51860020902536311059119138090, 0.51860020902536311059119138090, 0.76512604202615608171771781712, 0.981301979300453239216381280897, 0.983335368265266889618073751129, 1.12437948643308533121759092715, 1.24237843368814889930926872295, 1.89314453486748937723889002260, 1.89793299546158056440045377543, 2.09662749487150721203025885434, 2.14647611322891899249383761149, 2.33977441100508406934107123901, 2.39511395399818928211086739556, 2.40091883385074974794375894198, 2.63362742949133578597468971440, 2.74559376709046905725743728081, 2.98487059449252050967082662796, 3.02976387776582137422094243857, 3.09173358998269879976215077889, 3.17806668114539975544731516127, 3.41355724765996220278334269970, 3.45007524292191615862839947186, 3.71695112095465242551714340924, 3.81736409660597829717095700935, 3.83606431292845019629782321294, 3.87557437151970181617503925616

Graph of the ZZ-function along the critical line

Plot not available for L-functions of degree greater than 10.