L(s) = 1 | + 2·2-s + 2·3-s + 2·4-s − 4·5-s + 4·6-s + 2·9-s − 8·10-s − 4·11-s + 4·12-s + 18·13-s − 8·15-s − 8·17-s + 4·18-s − 8·19-s − 8·20-s − 8·22-s + 8·25-s + 36·26-s + 8·27-s + 2·29-s − 16·30-s + 20·31-s − 8·33-s − 16·34-s + 4·36-s − 4·37-s − 16·38-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 1.15·3-s + 4-s − 1.78·5-s + 1.63·6-s + 2/3·9-s − 2.52·10-s − 1.20·11-s + 1.15·12-s + 4.99·13-s − 2.06·15-s − 1.94·17-s + 0.942·18-s − 1.83·19-s − 1.78·20-s − 1.70·22-s + 8/5·25-s + 7.06·26-s + 1.53·27-s + 0.371·29-s − 2.92·30-s + 3.59·31-s − 1.39·33-s − 2.74·34-s + 2/3·36-s − 0.657·37-s − 2.59·38-s + ⋯ |
Λ(s)=(=((248⋅2312)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((248⋅2312)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
22.42409851 |
L(21) |
≈ |
22.42409851 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−pT+pT2−p2T4+p3T5−3p2T6+p4T7−p4T8+p5T10−p6T11+p6T12 |
| 23 | (1+T2)6 |
good | 3 | 1−2T+2T2−8T3+5T4+20T5−2p2T6+70T7−190T8+2p3T9+2T10−176T11+1273T12−176pT13+2p2T14+2p6T15−190p4T16+70p5T17−2p8T18+20p7T19+5p8T20−8p9T21+2p10T22−2p11T23+p12T24 |
| 5 | 1+4T+8T2−78T4−212T5−224T6+352T7+2731T8+4604T9+1568T10−17028T11−69976T12−17028pT13+1568p2T14+4604p3T15+2731p4T16+352p5T17−224p6T18−212p7T19−78p8T20+8p10T22+4p11T23+p12T24 |
| 7 | 1−68T2+2206T4−45092T6+13191p2T8−977464pT10+54838648T12−977464p3T14+13191p6T16−45092p6T18+2206p8T20−68p10T22+p12T24 |
| 11 | 1+4T+8T2+52T3−134T4−1140T5−2136T6−13484T7−22433T8+75376T9+143376T10+912056T11+5810608T12+912056pT13+143376p2T14+75376p3T15−22433p4T16−13484p5T17−2136p6T18−1140p7T19−134p8T20+52p9T21+8p10T22+4p11T23+p12T24 |
| 13 | 1−18T+162T2−84pT3+6673T4−37448T5+189270T6−889826T7+3998178T8−17024206T9+68598506T10−265184208T11+981270081T12−265184208pT13+68598506p2T14−17024206p3T15+3998178p4T16−889826p5T17+189270p6T18−37448p7T19+6673p8T20−84p10T21+162p10T22−18p11T23+p12T24 |
| 17 | (1+4T+64T2+246T3+2065T4+430pT5+43246T6+430p2T7+2065p2T8+246p3T9+64p4T10+4p5T11+p6T12)2 |
| 19 | 1+8T+32T2+8pT3+1418T4+8680T5+35616T6+179896T7+1102335T8+5132496T9+20297152T10+101957616T11+511158412T12+101957616pT13+20297152p2T14+5132496p3T15+1102335p4T16+179896p5T17+35616p6T18+8680p7T19+1418p8T20+8p10T21+32p10T22+8p11T23+p12T24 |
| 29 | 1−2T+2T2−424T3+2329T4+1780T5+81670T6−841602T7+1013250T8−114454pT9+172825850T10−584430420T11−337880919T12−584430420pT13+172825850p2T14−114454p4T15+1013250p4T16−841602p5T17+81670p6T18+1780p7T19+2329p8T20−424p9T21+2p10T22−2p11T23+p12T24 |
| 31 | (1−10T+143T2−1220T3+9818T4−67262T5+389725T6−67262pT7+9818p2T8−1220p3T9+143p4T10−10p5T11+p6T12)2 |
| 37 | 1+4T+8T2+232T3+14pT4−9756T5−16256T6−371240T7−61273pT8+5079796T9+8338688T10+230905436T11+6813255824T12+230905436pT13+8338688p2T14+5079796p3T15−61273p5T16−371240p5T17−16256p6T18−9756p7T19+14p9T20+232p9T21+8p10T22+4p11T23+p12T24 |
| 41 | 1−254T2+32757T4−2923858T6+201141458T8−11090716582T10+500464443061T12−11090716582p2T14+201141458p4T16−2923858p6T18+32757p8T20−254p10T22+p12T24 |
| 43 | 1−20T+200T2−924T3−1770T4+46524T5−149592T6−1971628T7+27832799T8−162350984T9+319707600T10+2960692776T11−33765637196T12+2960692776pT13+319707600p2T14−162350984p3T15+27832799p4T16−1971628p5T17−149592p6T18+46524p7T19−1770p8T20−924p9T21+200p10T22−20p11T23+p12T24 |
| 47 | (1+8T+147T2+830T3+11506T4+50068T5+588553T6+50068pT7+11506p2T8+830p3T9+147p4T10+8p5T11+p6T12)2 |
| 53 | 1+16T+128T2+1096T3+586T4−82200T5−789600T6−7806032T7−45654497T8+14272960T9+1357857504T10+20288254256T11+219339685132T12+20288254256pT13+1357857504p2T14+14272960p3T15−45654497p4T16−7806032p5T17−789600p6T18−82200p7T19+586p8T20+1096p9T21+128p10T22+16p11T23+p12T24 |
| 59 | 1−8T+32T2+312T3−8214T4+37896T5+8352T6−1753848T7+32803743T8−128318160T9+216281664T10+6242043056T11−111681131956T12+6242043056pT13+216281664p2T14−128318160p3T15+32803743p4T16−1753848p5T17+8352p6T18+37896p7T19−8214p8T20+312p9T21+32p10T22−8p11T23+p12T24 |
| 61 | 1−12T+72T2−436T3+10182T4−96692T5+522248T6−962348T7−2556417T8−61735480T9+701613808T10+10527482232T11−198377340076T12+10527482232pT13+701613808p2T14−61735480p3T15−2556417p4T16−962348p5T17+522248p6T18−96692p7T19+10182p8T20−436p9T21+72p10T22−12p11T23+p12T24 |
| 67 | 1+4T+8T2+76T3−1562T4+12052T5+63592T6+2247636T7−19830089T8−229054608T9−414801328T10−5101901080T11+60684024232T12−5101901080pT13−414801328p2T14−229054608p3T15−19830089p4T16+2247636p5T17+63592p6T18+12052p7T19−1562p8T20+76p9T21+8p10T22+4p11T23+p12T24 |
| 71 | 1−586T2+166561T4−30467270T6+4018404002T8−405369799706T10+32251408969501T12−405369799706p2T14+4018404002p4T16−30467270p6T18+166561p8T20−586p10T22+p12T24 |
| 73 | 1−422T2+93189T4−13924530T6+1577319194T8−145394149854T10+11405608578077T12−145394149854p2T14+1577319194p4T16−13924530p6T18+93189p8T20−422p10T22+p12T24 |
| 79 | (1+2T+368T2+1126T3+60155T4+204124T5+5897072T6+204124pT7+60155p2T8+1126p3T9+368p4T10+2p5T11+p6T12)2 |
| 83 | 1−28T+392T2−5876T3+84726T4−894300T5+9091496T6−99906012T7+883151735T8−7070500512T9+68426415632T10−574097189672T11+4396159810696T12−574097189672pT13+68426415632p2T14−7070500512p3T15+883151735p4T16−99906012p5T17+9091496p6T18−894300p7T19+84726p8T20−5876p9T21+392p10T22−28p11T23+p12T24 |
| 89 | 1−636T2+200302T4−41757740T6+6485840655T8−793818201688T10+78404791964292T12−793818201688p2T14+6485840655p4T16−41757740p6T18+200302p8T20−636p10T22+p12T24 |
| 97 | (1−18T+446T2−6848T3+95053T4−1194926T5+11749682T6−1194926pT7+95053p2T8−6848p3T9+446p4T10−18p5T11+p6T12)2 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.87557437151970181617503925616, −3.83606431292845019629782321294, −3.81736409660597829717095700935, −3.71695112095465242551714340924, −3.45007524292191615862839947186, −3.41355724765996220278334269970, −3.17806668114539975544731516127, −3.09173358998269879976215077889, −3.02976387776582137422094243857, −2.98487059449252050967082662796, −2.74559376709046905725743728081, −2.63362742949133578597468971440, −2.40091883385074974794375894198, −2.39511395399818928211086739556, −2.33977441100508406934107123901, −2.14647611322891899249383761149, −2.09662749487150721203025885434, −1.89793299546158056440045377543, −1.89314453486748937723889002260, −1.24237843368814889930926872295, −1.12437948643308533121759092715, −0.983335368265266889618073751129, −0.981301979300453239216381280897, −0.76512604202615608171771781712, −0.51860020902536311059119138090,
0.51860020902536311059119138090, 0.76512604202615608171771781712, 0.981301979300453239216381280897, 0.983335368265266889618073751129, 1.12437948643308533121759092715, 1.24237843368814889930926872295, 1.89314453486748937723889002260, 1.89793299546158056440045377543, 2.09662749487150721203025885434, 2.14647611322891899249383761149, 2.33977441100508406934107123901, 2.39511395399818928211086739556, 2.40091883385074974794375894198, 2.63362742949133578597468971440, 2.74559376709046905725743728081, 2.98487059449252050967082662796, 3.02976387776582137422094243857, 3.09173358998269879976215077889, 3.17806668114539975544731516127, 3.41355724765996220278334269970, 3.45007524292191615862839947186, 3.71695112095465242551714340924, 3.81736409660597829717095700935, 3.83606431292845019629782321294, 3.87557437151970181617503925616
Plot not available for L-functions of degree greater than 10.