L(s) = 1 | + 4-s − 2·7-s − 2·9-s − 14·11-s − 2·28-s − 2·36-s − 14·44-s + 49-s − 2·53-s + 4·63-s + 2·67-s + 28·77-s + 12·79-s + 81-s + 28·99-s + 2·107-s + 2·109-s + 2·113-s + 103·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
L(s) = 1 | + 4-s − 2·7-s − 2·9-s − 14·11-s − 2·28-s − 2·36-s − 14·44-s + 49-s − 2·53-s + 4·63-s + 2·67-s + 28·77-s + 12·79-s + 81-s + 28·99-s + 2·107-s + 2·109-s + 2·113-s + 103·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 7^{12} \cdot 29^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03720829939\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.03720829939\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \) |
| 7 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 29 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} \) |
good | 3 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 5 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 11 | \( ( 1 + T )^{12}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 13 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 17 | \( ( 1 + T^{4} )^{6} \) |
| 19 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 23 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 31 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 37 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2} \) |
| 41 | \( ( 1 + T^{4} )^{6} \) |
| 43 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 47 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 53 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 59 | \( ( 1 + T^{4} )^{6} \) |
| 61 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 67 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} )^{2}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 71 | \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} )^{2} \) |
| 73 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 79 | \( ( 1 - T )^{12}( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} ) \) |
| 83 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 89 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
| 97 | \( 1 - T^{4} + T^{8} - T^{12} + T^{16} - T^{20} + T^{24} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−2.80619435044502337628390718237, −2.75816295166202988366511147127, −2.75121595906662289882376630550, −2.74472617102369417241371299980, −2.42974730887494632932217803472, −2.40147425749081777994261807526, −2.31781084987927365357351847820, −2.30983337006509830862908816689, −2.25137265729258605621425645057, −2.20289543551264693315129232256, −2.18810645747786248825370074752, −2.00265048721836501657868748366, −1.98793017048808606655934558805, −1.91583934230900068236252894528, −1.87870359576323903774406765781, −1.73207396799326423371302566508, −1.61527636418388386204893832755, −1.16780635880960428453889370481, −0.922971012896105521524703967037, −0.865696155527756897274513331254, −0.800471469547880981632014139605, −0.58928495555956520307320991661, −0.57839118127592281412143114182, −0.32841126811539604059450013499, −0.13953630122734436417359568789,
0.13953630122734436417359568789, 0.32841126811539604059450013499, 0.57839118127592281412143114182, 0.58928495555956520307320991661, 0.800471469547880981632014139605, 0.865696155527756897274513331254, 0.922971012896105521524703967037, 1.16780635880960428453889370481, 1.61527636418388386204893832755, 1.73207396799326423371302566508, 1.87870359576323903774406765781, 1.91583934230900068236252894528, 1.98793017048808606655934558805, 2.00265048721836501657868748366, 2.18810645747786248825370074752, 2.20289543551264693315129232256, 2.25137265729258605621425645057, 2.30983337006509830862908816689, 2.31781084987927365357351847820, 2.40147425749081777994261807526, 2.42974730887494632932217803472, 2.74472617102369417241371299980, 2.75121595906662289882376630550, 2.75816295166202988366511147127, 2.80619435044502337628390718237
Plot not available for L-functions of degree greater than 10.