L(s) = 1 | + 2-s − 2·5-s + 9-s − 2·10-s + 2·17-s + 18-s + 25-s + 2·34-s − 11·41-s − 2·45-s + 49-s + 50-s + 2·53-s − 2·73-s − 11·82-s − 4·85-s − 89-s − 2·90-s + 2·97-s + 98-s + 2·106-s + 2·109-s − 11·113-s − 121-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 2-s − 2·5-s + 9-s − 2·10-s + 2·17-s + 18-s + 25-s + 2·34-s − 11·41-s − 2·45-s + 49-s + 50-s + 2·53-s − 2·73-s − 11·82-s − 4·85-s − 89-s − 2·90-s + 2·97-s + 98-s + 2·106-s + 2·109-s − 11·113-s − 121-s + 127-s + 131-s + 137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 89^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 89^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1347570387\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1347570387\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \) |
| 89 | \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \) |
good | 3 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 5 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 7 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 11 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 17 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 19 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 23 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 31 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 37 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 41 | \( ( 1 + T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 43 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 47 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 53 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 59 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 61 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 67 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 71 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 73 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 79 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 83 | \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \) |
| 97 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.60853210138931321179250322428, −4.55047403669309642824747892771, −4.42027831593489478884672340402, −4.30313195020195982436761559152, −4.10844803052949219168746917004, −4.03777697057259993599514038234, −3.84956412873076182355801355204, −3.84254615638842097389534799657, −3.71748376937104015517672014979, −3.56679050344735415930525836170, −3.54988341188618908463250821895, −3.43401291293704688827894219833, −3.21753737632242600859014025853, −3.15196090987022040142786865174, −2.86541086099391713096257156992, −2.81505694582913008982704769698, −2.78879267950988322410628807109, −2.41497063729059956852937792305, −2.25974692961862706604374570360, −2.00239845179739882582171636538, −1.88830816320657581096454589226, −1.48470353483042535341366666605, −1.44044850604527411676403841841, −1.33159939103887719554328230241, −1.32961271661751691913550004195,
1.32961271661751691913550004195, 1.33159939103887719554328230241, 1.44044850604527411676403841841, 1.48470353483042535341366666605, 1.88830816320657581096454589226, 2.00239845179739882582171636538, 2.25974692961862706604374570360, 2.41497063729059956852937792305, 2.78879267950988322410628807109, 2.81505694582913008982704769698, 2.86541086099391713096257156992, 3.15196090987022040142786865174, 3.21753737632242600859014025853, 3.43401291293704688827894219833, 3.54988341188618908463250821895, 3.56679050344735415930525836170, 3.71748376937104015517672014979, 3.84254615638842097389534799657, 3.84956412873076182355801355204, 4.03777697057259993599514038234, 4.10844803052949219168746917004, 4.30313195020195982436761559152, 4.42027831593489478884672340402, 4.55047403669309642824747892771, 4.60853210138931321179250322428
Plot not available for L-functions of degree greater than 10.