Properties

Label 20-356e10-1.1-c0e10-0-1
Degree $20$
Conductor $3.270\times 10^{25}$
Sign $1$
Analytic cond. $3.13379\times 10^{-8}$
Root an. cond. $0.421505$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·5-s + 9-s − 2·10-s + 2·17-s + 18-s + 25-s + 2·34-s − 11·41-s − 2·45-s + 49-s + 50-s + 2·53-s − 2·73-s − 11·82-s − 4·85-s − 89-s − 2·90-s + 2·97-s + 98-s + 2·106-s + 2·109-s − 11·113-s − 121-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  + 2-s − 2·5-s + 9-s − 2·10-s + 2·17-s + 18-s + 25-s + 2·34-s − 11·41-s − 2·45-s + 49-s + 50-s + 2·53-s − 2·73-s − 11·82-s − 4·85-s − 89-s − 2·90-s + 2·97-s + 98-s + 2·106-s + 2·109-s − 11·113-s − 121-s + 127-s + 131-s + 137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 89^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 89^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(2^{20} \cdot 89^{10}\)
Sign: $1$
Analytic conductor: \(3.13379\times 10^{-8}\)
Root analytic conductor: \(0.421505\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 2^{20} \cdot 89^{10} ,\ ( \ : [0]^{10} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1347570387\)
\(L(\frac12)\) \(\approx\) \(0.1347570387\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \)
89 \( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} \)
good3 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
5 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
7 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
11 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
13 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
17 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \)
19 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
23 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
29 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
31 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
37 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
41 \( ( 1 + T )^{10}( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
43 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
47 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
53 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \)
59 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
61 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
67 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
71 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
73 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
79 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
83 \( 1 - T^{2} + T^{4} - T^{6} + T^{8} - T^{10} + T^{12} - T^{14} + T^{16} - T^{18} + T^{20} \)
97 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.60853210138931321179250322428, −4.55047403669309642824747892771, −4.42027831593489478884672340402, −4.30313195020195982436761559152, −4.10844803052949219168746917004, −4.03777697057259993599514038234, −3.84956412873076182355801355204, −3.84254615638842097389534799657, −3.71748376937104015517672014979, −3.56679050344735415930525836170, −3.54988341188618908463250821895, −3.43401291293704688827894219833, −3.21753737632242600859014025853, −3.15196090987022040142786865174, −2.86541086099391713096257156992, −2.81505694582913008982704769698, −2.78879267950988322410628807109, −2.41497063729059956852937792305, −2.25974692961862706604374570360, −2.00239845179739882582171636538, −1.88830816320657581096454589226, −1.48470353483042535341366666605, −1.44044850604527411676403841841, −1.33159939103887719554328230241, −1.32961271661751691913550004195, 1.32961271661751691913550004195, 1.33159939103887719554328230241, 1.44044850604527411676403841841, 1.48470353483042535341366666605, 1.88830816320657581096454589226, 2.00239845179739882582171636538, 2.25974692961862706604374570360, 2.41497063729059956852937792305, 2.78879267950988322410628807109, 2.81505694582913008982704769698, 2.86541086099391713096257156992, 3.15196090987022040142786865174, 3.21753737632242600859014025853, 3.43401291293704688827894219833, 3.54988341188618908463250821895, 3.56679050344735415930525836170, 3.71748376937104015517672014979, 3.84254615638842097389534799657, 3.84956412873076182355801355204, 4.03777697057259993599514038234, 4.10844803052949219168746917004, 4.30313195020195982436761559152, 4.42027831593489478884672340402, 4.55047403669309642824747892771, 4.60853210138931321179250322428

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.