L(s) = 1 | + 2·2-s + 3-s + 4-s + 5-s + 2·6-s + 2·10-s + 12-s + 15-s − 9·17-s − 2·19-s + 20-s + 23-s + 2·30-s − 2·31-s − 18·34-s − 4·38-s + 2·46-s + 2·47-s − 49-s − 9·51-s + 2·53-s − 2·57-s + 60-s − 2·61-s − 4·62-s − 9·68-s + 69-s + ⋯ |
L(s) = 1 | + 2·2-s + 3-s + 4-s + 5-s + 2·6-s + 2·10-s + 12-s + 15-s − 9·17-s − 2·19-s + 20-s + 23-s + 2·30-s − 2·31-s − 18·34-s − 4·38-s + 2·46-s + 2·47-s − 49-s − 9·51-s + 2·53-s − 2·57-s + 60-s − 2·61-s − 4·62-s − 9·68-s + 69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2935385324\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2935385324\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \) |
| 5 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \) |
| 23 | \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \) |
good | 2 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 7 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 11 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 13 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 17 | \( ( 1 + T )^{10}( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} ) \) |
| 19 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 29 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 31 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 37 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 41 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 43 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 47 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 53 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 59 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 61 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 67 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 71 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 73 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 79 | \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \) |
| 83 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \) |
| 89 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
| 97 | \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−4.66617679657708703050914336976, −4.40123073477369059609705232934, −4.38731467392728414590086922090, −4.28106426218750762746123573566, −4.24448073499025383072672241374, −4.21956368620172944590127652851, −4.19879335999673404124637875627, −3.97434446337047758963037634180, −3.89015029567033012296417809761, −3.68401320547403646415375847049, −3.57116908063908706177172820098, −3.18318533600586371773602693187, −3.13795407057837575821672276431, −3.12239585731573080580851291717, −2.90775491540304529291416340218, −2.63677095653043685916943335759, −2.40808450392782532146963615471, −2.37241171271500265584326077491, −2.31922035049849309240458116382, −2.22927734311216061392692661539, −2.02814647881621849280411427147, −1.93444899378404989563053912713, −1.91356262191587050783150513902, −1.50243773852471881702343975882, −1.22839291745440218559207799799,
1.22839291745440218559207799799, 1.50243773852471881702343975882, 1.91356262191587050783150513902, 1.93444899378404989563053912713, 2.02814647881621849280411427147, 2.22927734311216061392692661539, 2.31922035049849309240458116382, 2.37241171271500265584326077491, 2.40808450392782532146963615471, 2.63677095653043685916943335759, 2.90775491540304529291416340218, 3.12239585731573080580851291717, 3.13795407057837575821672276431, 3.18318533600586371773602693187, 3.57116908063908706177172820098, 3.68401320547403646415375847049, 3.89015029567033012296417809761, 3.97434446337047758963037634180, 4.19879335999673404124637875627, 4.21956368620172944590127652851, 4.24448073499025383072672241374, 4.28106426218750762746123573566, 4.38731467392728414590086922090, 4.40123073477369059609705232934, 4.66617679657708703050914336976
Plot not available for L-functions of degree greater than 10.