Properties

Label 20-345e10-1.1-c0e10-0-1
Degree $20$
Conductor $2.389\times 10^{25}$
Sign $1$
Analytic cond. $2.28961\times 10^{-8}$
Root an. cond. $0.414942$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 4-s + 5-s + 2·6-s + 2·10-s + 12-s + 15-s − 9·17-s − 2·19-s + 20-s + 23-s + 2·30-s − 2·31-s − 18·34-s − 4·38-s + 2·46-s + 2·47-s − 49-s − 9·51-s + 2·53-s − 2·57-s + 60-s − 2·61-s − 4·62-s − 9·68-s + 69-s + ⋯
L(s)  = 1  + 2·2-s + 3-s + 4-s + 5-s + 2·6-s + 2·10-s + 12-s + 15-s − 9·17-s − 2·19-s + 20-s + 23-s + 2·30-s − 2·31-s − 18·34-s − 4·38-s + 2·46-s + 2·47-s − 49-s − 9·51-s + 2·53-s − 2·57-s + 60-s − 2·61-s − 4·62-s − 9·68-s + 69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{10} \cdot 5^{10} \cdot 23^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(3^{10} \cdot 5^{10} \cdot 23^{10}\)
Sign: $1$
Analytic conductor: \(2.28961\times 10^{-8}\)
Root analytic conductor: \(0.414942\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 3^{10} \cdot 5^{10} \cdot 23^{10} ,\ ( \ : [0]^{10} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2935385324\)
\(L(\frac12)\) \(\approx\) \(0.2935385324\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \)
5 \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \)
23 \( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} \)
good2 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \)
7 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
11 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
13 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
17 \( ( 1 + T )^{10}( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} ) \)
19 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
29 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
31 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
37 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
41 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
43 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
47 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \)
53 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \)
59 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
61 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
67 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
71 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
73 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
79 \( ( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} )^{2} \)
83 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )^{2} \)
89 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
97 \( ( 1 - T + T^{2} - T^{3} + T^{4} - T^{5} + T^{6} - T^{7} + T^{8} - T^{9} + T^{10} )( 1 + T + T^{2} + T^{3} + T^{4} + T^{5} + T^{6} + T^{7} + T^{8} + T^{9} + T^{10} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.66617679657708703050914336976, −4.40123073477369059609705232934, −4.38731467392728414590086922090, −4.28106426218750762746123573566, −4.24448073499025383072672241374, −4.21956368620172944590127652851, −4.19879335999673404124637875627, −3.97434446337047758963037634180, −3.89015029567033012296417809761, −3.68401320547403646415375847049, −3.57116908063908706177172820098, −3.18318533600586371773602693187, −3.13795407057837575821672276431, −3.12239585731573080580851291717, −2.90775491540304529291416340218, −2.63677095653043685916943335759, −2.40808450392782532146963615471, −2.37241171271500265584326077491, −2.31922035049849309240458116382, −2.22927734311216061392692661539, −2.02814647881621849280411427147, −1.93444899378404989563053912713, −1.91356262191587050783150513902, −1.50243773852471881702343975882, −1.22839291745440218559207799799, 1.22839291745440218559207799799, 1.50243773852471881702343975882, 1.91356262191587050783150513902, 1.93444899378404989563053912713, 2.02814647881621849280411427147, 2.22927734311216061392692661539, 2.31922035049849309240458116382, 2.37241171271500265584326077491, 2.40808450392782532146963615471, 2.63677095653043685916943335759, 2.90775491540304529291416340218, 3.12239585731573080580851291717, 3.13795407057837575821672276431, 3.18318533600586371773602693187, 3.57116908063908706177172820098, 3.68401320547403646415375847049, 3.89015029567033012296417809761, 3.97434446337047758963037634180, 4.19879335999673404124637875627, 4.21956368620172944590127652851, 4.24448073499025383072672241374, 4.28106426218750762746123573566, 4.38731467392728414590086922090, 4.40123073477369059609705232934, 4.66617679657708703050914336976

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.