L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.07 − 1.35i)3-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (−1.71 − 0.254i)6-s + (2.99 − 1.73i)7-s + 0.999·8-s + (−0.678 − 2.92i)9-s + 0.999i·10-s + (−2.44 − 2.23i)11-s + (0.635 + 1.61i)12-s + (4.08 + 2.36i)13-s + (−2.99 − 1.73i)14-s + (−1.61 + 0.635i)15-s + (−0.5 − 0.866i)16-s + 6.28·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.622 − 0.782i)3-s + (−0.249 + 0.433i)4-s + (−0.387 − 0.223i)5-s + (−0.699 − 0.104i)6-s + (1.13 − 0.654i)7-s + 0.353·8-s + (−0.226 − 0.974i)9-s + 0.316i·10-s + (−0.738 − 0.674i)11-s + (0.183 + 0.465i)12-s + (1.13 + 0.654i)13-s + (−0.801 − 0.462i)14-s + (−0.415 + 0.164i)15-s + (−0.125 − 0.216i)16-s + 1.52·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.758 + 0.651i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.758 + 0.651i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.572757 - 1.54654i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.572757 - 1.54654i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.07 + 1.35i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (2.44 + 2.23i)T \) |
good | 7 | \( 1 + (-2.99 + 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (-4.08 - 2.36i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 6.28T + 17T^{2} \) |
| 19 | \( 1 + 1.66iT - 19T^{2} \) |
| 23 | \( 1 + (2.01 + 1.16i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.90 + 3.30i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.66 - 2.88i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.17T + 37T^{2} \) |
| 41 | \( 1 + (2.12 - 3.67i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.0168 + 0.00970i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.34 - 3.66i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 12.5iT - 53T^{2} \) |
| 59 | \( 1 + (0.935 + 0.540i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.56 + 1.48i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.90 + 5.02i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.9iT - 71T^{2} \) |
| 73 | \( 1 + 12.0iT - 73T^{2} \) |
| 79 | \( 1 + (3.58 - 2.06i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.30 - 3.98i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 14.9iT - 89T^{2} \) |
| 97 | \( 1 + (-5.93 - 10.2i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.603498479332510368134332189952, −8.585911906485916649890970531740, −8.067512702405767788402796656752, −7.60850748355394960854927822883, −6.44032813662429342278624428918, −5.19708964831185257915177594040, −3.97820447339133661501851189569, −3.19173497029811183752666248260, −1.79549225794666297322026573541, −0.870287678159676940845380684077,
1.72477465594303677666133810499, 3.11846238438052052676163994876, 4.18044422953588612014564486770, 5.28557834123401822619823724199, 5.71694472515338483092193529529, 7.35717709075055568268683902654, 8.035960985731326405680176411135, 8.377344487456995067483884796492, 9.383569484404641030505921653203, 10.24390939477608289367848678633