L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 − 0.587i)4-s + (0.951 − 0.309i)5-s + (−1.76 + 2.42i)7-s + (−0.809 + 0.587i)8-s − 0.999i·10-s + (3.31 − 0.0399i)11-s + (2.08 + 0.677i)13-s + (1.76 + 2.42i)14-s + (0.309 + 0.951i)16-s + (0.0911 + 0.280i)17-s + (0.0850 + 0.117i)19-s + (−0.951 − 0.309i)20-s + (0.986 − 3.16i)22-s + 5.49i·23-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (−0.404 − 0.293i)4-s + (0.425 − 0.138i)5-s + (−0.666 + 0.917i)7-s + (−0.286 + 0.207i)8-s − 0.316i·10-s + (0.999 − 0.0120i)11-s + (0.578 + 0.187i)13-s + (0.471 + 0.649i)14-s + (0.0772 + 0.237i)16-s + (0.0220 + 0.0680i)17-s + (0.0195 + 0.0268i)19-s + (−0.212 − 0.0690i)20-s + (0.210 − 0.675i)22-s + 1.14i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.943 + 0.330i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.943 + 0.330i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.80054 - 0.306235i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80054 - 0.306235i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.951 + 0.309i)T \) |
| 11 | \( 1 + (-3.31 + 0.0399i)T \) |
good | 7 | \( 1 + (1.76 - 2.42i)T + (-2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-2.08 - 0.677i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.0911 - 0.280i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.0850 - 0.117i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 5.49iT - 23T^{2} \) |
| 29 | \( 1 + (-6.19 - 4.50i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.47 + 4.54i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-3.38 - 2.45i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-8.45 + 6.14i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 11.0iT - 43T^{2} \) |
| 47 | \( 1 + (-6.59 - 9.07i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (1.69 + 0.551i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (4.12 - 5.68i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (2.02 - 0.656i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 11.0T + 67T^{2} \) |
| 71 | \( 1 + (-2.61 + 0.850i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-0.581 + 0.800i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (9.46 + 3.07i)T + (63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (0.272 + 0.838i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 3.26iT - 89T^{2} \) |
| 97 | \( 1 + (-2.85 + 8.78i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.891641144134105661773756400963, −9.087648307370202112605781646568, −8.806196565588726345467038102307, −7.37948393906366349755767421141, −6.15954285376968257949689779763, −5.79337747428982469082651149884, −4.51655835829586787789942673329, −3.51355824276015848112283556717, −2.50325443153944524251899064072, −1.26811465229902572556741658193,
0.964408228622138612036169496733, 2.84777973481974953815066171450, 3.94178282710056424732229210792, 4.69728153374339915243371072272, 6.16635451279717509747489604136, 6.41518453768967035280919870175, 7.34413767397684139767429428689, 8.312824116482126542709533512168, 9.172561727499824996094947456426, 9.956078104825042181702621677199